1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alisiya [41]
3 years ago
10

6. Minimum value determined by the formula function f (x) = 2x ²-8x + p was 20. Value f (2) is.

Mathematics
1 answer:
Sergeeva-Olga [200]3 years ago
6 0
6)\ \ \ f(x)=2x^2-8x+p\\the\ minimum\ value =20\ \ \ \Leftrightarrow\ \ \ y_{\ of\ vertex}=20\ \ \ \Leftrightarrow\ \ \ - \frac{\Delta}{2a} =20\\\\\Delta=(-8)^2-4\cdot2\cdot p=64-8p\ \ \Leftrightarrow\ \ - \frac{64-8p}{2\cdot2} =20\ \ \Leftrightarrow\ \ -16+2p=20\\\\2p=36\ \ \ \Leftrightarrow\ \ \ p=18\ \ \ \Rightarrow\ \ \ \ f(x)=2x^2-8x+18\\\\f(2)=2\cdot2^2-8\cdot2+18=2\cdot4-16+18=8+2=10

7)\ the\ shape\ factor\ of\ the\ quadratic\ equation\ 4x^2-13x = -3\\ is\ a=4\ \ \ (\ a>0\ \ \ \rightarrow\ \ \ the\ shape\ is\ \cup\ )\\\\8)\ \ \ the\ turning\ point=(-15;3)\ \ \ \Rightarrow\ \ \ f(x)=a(x+15)^2+3\\\\ the\ graph\ passes\ through\ the\ point\ (-12.0) \ \Rightarrow\ \ 0=a(-12+15)^2+3\\\\\Rightarrow\ \ \ a\cdot3^2=-3\ \ \ \Rightarrow\ \ \ a=- \frac{3}{9} =- \frac{1}{3} \ \ \ \Rightarrow\ \ \ f(x)=- \frac{1}{3}(x+15)^2+3

\Rightarrow\ \ \ f(x)=- \frac{1}{3}(x^2+30x+225)+3=- \frac{1}{3}x^2-10x-72\\\\9)\ \ \ 4x^2+px+25=0\\\\\Delta=p^2-4\cdot4\cdot25=p^2-400\\\\two\ solutions\ \ \Leftrightarrow\ \ \Delta>0\ \ \Leftrightarrow\ \ p^2-40>0\ \ \Leftrightarrow\ \ (p-20)(p+20)>0\\.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \Leftrightarrow\ \ \ p\in(-\infty;\ -20)\ \cap\ (20;\ +\infty)\\-------------------------------

the\ Vieta's\  formulas\  to\ the\ quadratic\ equation\ ax^2+bx+c=0\\\\x_1+x_2=- \frac{b}{a} \ \ \ and\ \ \ x_1\cdot x_2= \frac{c}{a} \\------------------------------\\\\x_1+x_2=- \frac{p}{4} \ \ \ and\ \ \ x_1\cdot x_2= \frac{25}{4} \\\\x_1^2+x_2^2=x_1^2+2\cdot x_1\cdot x_2 +x_2^2-2\cdot x_1\cdot x_2 =(x_1+x_2)^2-2\cdot x_1\cdot x_2 \\\\x_1^2+x_2^2=(x_1+x_2)^2-2\cdot x_1\cdot x_2 \ \ \ \Leftrightarrow\ \ \ 12.5=(- \frac{p}{4} )^2-2\cdot \frac{25}{4} \\\\

12.5= \frac{p^2}{16} +12.5 \ \ \ \Leftrightarrow\ \ \  \frac{p^2}{16}=0 \ \ \ \Leftrightarrow\ \ \  p^2=0 \ \ \ \Leftrightarrow\ \ \  p=0\\\\\\10)\ \ \ x^2-4x+3=0\ \ \ and\ \ \ x^2+4x-21=0\\\\  x^2-4x+3=x^2+4x-21\ \ \Leftrightarrow\ \ -4x-4x=-21-3\\\\\ \ \Leftrightarrow\ \ -8x=-24\ \ \Leftrightarrow\ \ x=3
You might be interested in
Alex originally paid $5200 for her car 1 year ago. The value of her car would is $4,420. What is the percent of decrease in the
horsena [70]

See the picture for the answer.



8 0
3 years ago
A cereal manufacturer decides to offer a new family-sized box based on the regular-sized box. They want the volume of the family
Pani-rosa [81]
The answer would be an increase by a factor of 3/2
4 0
3 years ago
Read 2 more answers
Please. Answer Fast! Use composition to determine if G(x) or H(x) is the inverse of F(x) for the
s344n2d4d5 [400]

Answer:

A. H(x) is an inverse of F(x)

Step-by-step explanation:

The given functions are:

F(x)=\sqrt{x-2}

G(x)=(x-2)^2

H(x)=x^2+2

We compose F(x) and G(x) to get:

(F\circ G)(x)=F(G(x))

(F\circ G)(x)=F((x-2)^2)

(F\circ G)(x)=\sqrt{(x-2)^2-2}

(F\circ G)(x)=\sqrt{x^2-4x+4-2}

(F\circ G)(x)=\sqrt{x^2-4x+2}

(F\circ G)(x)\ne x

Hence G(x) is not an inverse of F(x).

We now compose H(x) and G(x).

(F\circ H)(x)=F(H(x))

(F\circ H)(x)=F(x^2+2)

(F\circ H)(x)=\sqrt{x^2+2-2}

We simplify to get:

(F\circ H)(x)=\sqrt{x^2}

(F\circ H)(x)=x

Since (F\circ H)(x)=x, H(x) is an inverse of F(x)

3 0
3 years ago
Please help me , thank you
natka813 [3]

Answer:

80 degrees

Step-by-step explanation:

one half of the circle makes a straight line and that will equal 180 degrees so 60+45=105

180-105=80

so the missing angle is x=80

4 0
3 years ago
Read 2 more answers
Ross drives 340 miles in 5 hour if ross continues to drive at the same rate how many miles can he drive in 10 hours?
yKpoI14uk [10]
He can drive about 680 miles in 10 hours.
7 0
3 years ago
Other questions:
  • What is the difference between postitive association and positive correlation
    12·1 answer
  • There’s also D <br><br> D: 4m on top and 4m on the side
    8·2 answers
  • What propertydescribes the number sentence<br> 6+0=6
    9·1 answer
  • How to evaluate s-r/-7 when r=-3 and s=4?
    13·1 answer
  • Convert to liters: 41,000 milliliter
    15·2 answers
  • Nelson decides to invest $1,000,000 in a period annuity that
    13·1 answer
  • TRUE OR FALSE PLEASE HELP ME IM CRYING
    14·2 answers
  • HELPPPP!!!!!
    5·2 answers
  • Finding the cube roots of REALLY BIG Numbers.
    12·1 answer
  • PLEASE ANSWER DON'T SEND A RANDOM LINK BRAINLIEST
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!