Annually The amount after 10 years = $ 7247.295
quarterly compound after 10 years = $7393.5
Continuously interest =$7,419
Given:
P = the principal amount
r = rate of interest
t = time in years
n = number of times the amount is compounding.
Principal = $4500
time= 10 year
Rate = 5%
To find: The amount after 10 years.
The principal amount is, P = $4500
The rate of interest is, r = 5% =5/100 = 0.05.
The time in years is, t = 10.
Using the quarterly compound interest formula:
A = P (1 + r / 4)4 t
A= 4500(1+.05/4)40
A= 4500(4.05/4)40
A= 4500(1.643)
Answer: The amount after 10 years = $7393.5
Using the Annually compound interest formula:
A = P (1 + r / 100) t
A= 4500(1+5/100)10
A= 4500(105/100)10
Answer: The amount after 10 years = $ 7247.295
Using the Continuously compound interest formula:
e stands for Napier’s number, which is approximately 2.7183

A= $2,919
Answer: The amount after 10 years = $4500+$2,919=$7,419
More details :brainly.com/question/13307568
#SPJ9
5p squared - 2p - 8 - 8 over p+3
Answer:
first term: 7
find the 17th term : 102
fifteent term: 10
Step-by-step explanation:
hababa
Answer:
A. -2x^3y5 has a degree of 8
Step-by-step explanation:
Calculator :-)
HI Sydney!
Question:
Solve 5^2 - 4 x 6 + 11
Solution:
Remember to follow PEMDAS,
= 5^2 - 4 x 6 + 11
= 25 - 4 x 6 + 11
= 25 - 24 + 11
= 1 + 11
= 12
Answer: 12