1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goldenfox [79]
3 years ago
15

Create a vector named iq of 100 elements of N(100,20) (normal with a mean of 100 and std dev of 20) data. 6. add 10 to every ele

ment of iq 7. calculate the mean and std dev of iq?
Mathematics
1 answer:
DaniilM [7]3 years ago
7 0

Answer:

See code and explanation below.

Step-by-step explanation:

For this case we can use the following R code to create a vector of 100 elements from a normal distribution given by:

X \sim N (\mu = 100. \sigma= 20)

The function rnorm creates a sample data from the normla distribution with the mean and deviation provided

> normal<-rnorm(100,mean = 100,sd=20)

We can visualize the data like this

> normal

 [1]  87.47092 103.67287  83.28743 131.90562 106.59016  83.59063 109.74858 114.76649 111.51563

[10]  93.89223 130.23562 107.79686  87.57519  55.70600 122.49862  99.10133  99.67619 118.87672

[19] 116.42442 111.87803 118.37955 115.64273 101.49130  60.21297 112.39651  98.87743  96.88409

[28]  70.58495  90.43700 108.35883 127.17359  97.94425 107.75343  98.92390  72.45881  91.70011

[37]  92.11420  98.81373 122.00051 115.26351  96.70953  94.93277 113.93927 111.13326  86.22489

[46]  85.85010 107.29164 115.37066  97.75308 117.62215 107.96212  87.75947 106.82239  77.41274

[55] 128.66047 139.60800  92.65557  79.11731 111.39439  97.29891 148.03236  99.21520 113.79479

[64] 100.56004  85.13454 103.77585  63.90083 129.31110 103.06507 143.45223 109.51019  85.80107

[73] 112.21453  81.31805  74.92733 105.82892  91.13416 100.02211 101.48683  88.20958  88.62663

[82]  97.29643 123.56174  69.52866 111.87892 106.65901 121.26200  93.91632 107.40038 105.34198

[91]  89.14960 124.15736 123.20805 114.00427 131.73667 111.16973  74.46816  88.53469  75.50775

[100]  90.53199

Then we can add 10 to each element of the vector like this:

> normal1<-normal+10

And we can visualize the results like this

> normal1

 [1]  97.47092 113.67287  93.28743 141.90562 116.59016  93.59063 119.74858 124.76649 121.51563

[10] 103.89223 140.23562 117.79686  97.57519  65.70600 132.49862 109.10133 109.67619 128.87672

[19] 126.42442 121.87803 128.37955 125.64273 111.49130  70.21297 122.39651 108.87743 106.88409

[28]  80.58495 100.43700 118.35883 137.17359 107.94425 117.75343 108.92390  82.45881 101.70011

[37] 102.11420 108.81373 132.00051 125.26351 106.70953 104.93277 123.93927 121.13326  96.22489

[46]  95.85010 117.29164 125.37066 107.75308 127.62215 117.96212  97.75947 116.82239  87.41274

[55] 138.66047 149.60800 102.65557  89.11731 121.39439 107.29891 158.03236 109.21520 123.79479

[64] 110.56004  95.13454 113.77585  73.90083 139.31110 113.06507 153.45223 119.51019  95.80107

[73] 122.21453  91.31805  84.92733 115.82892 101.13416 110.02211 111.48683  98.20958  98.62663

[82] 107.29643 133.56174  79.52866 121.87892 116.65901 131.26200 103.91632 117.40038 115.34198

[91]  99.14960 134.15736 133.20805 124.00427 141.73667 121.16973  84.46816  98.53469  85.50775

[100] 100.53199

The sample mean is given by:

\bar X = \frac{\sum_{i=1}^n X_i}{n}

And the sample deviation by:

s =\sqrt{\frac{\sum_{i=1}^n (X_i -\bar X)^2}{n-1}}

If we want to calculate the mean and standard deviation for the original data we can do this:

> mean(normal)

[1] 102.1777

And the standard deviation with:

> sd(normal)

[1] 17.96399

Other way to calculate the deviation is:

> sqrt(sum((normal-mean(normal))^2/(length(normal)-1)))

[1] 17.96399

You might be interested in
Use foil (a + 3)(a - 2)
blsea [12.9K]

Answer:

\left(a+3\right)\left(a-2\right)=a^2+a-6=

Step-by-step explanation:

Given expression is \left(a+3\right)\left(a-2\right).

Now we need to multiply this using FOIL.

F = First =\left(a\right)\left(a\right)= a^2

O = Outside =\left(a\right)\left(-2\right)= -2a

I = Inside =\left(3\right)\left(a\right)= 3a

L = Last =\left(3\right)\left(-2\right)= -6

Hence we get :

\left(a+3\right)\left(a-2\right)=a^2-2a+3a-6=a^2+a-6=

7 0
3 years ago
Read 2 more answers
Find the number of terms common to the two A.P.'s 3,7,11,......,407 and 2,9,16,......,709
melomori [17]

Answer: 14 terms

Step-by-step explanation:

5 0
3 years ago
What are the quadrants of the standard (x,y) coordinate plane below that contain points on the graph of the equation 4x - 2y = 8
miv72 [106K]

Answer: I III and IV

Step-by-step explanation:

The line intersects the x axis at (2,0) and the y axis at (0,-4) so the line goes through quadrants 1 3 and 4 so the answer is the middle or the 3rd from top

7 0
2 years ago
!!!PLEASE HELPP ME!!
Annette [7]

Answer:

negative :)

Step-by-step explanation:

hope this helps

6 0
2 years ago
Read 2 more answers
Select the equation of the line parallel to the equation 2x + 4y = -5 that passes through the point (-4, -8).
marusya05 [52]
The equation for the line will be x+2y=-20 
7 0
3 years ago
Other questions:
  • Math question down below
    8·2 answers
  • In Chicago a taxi ride cost $3.25 plus $1.80 for each mile traveled. Debbie has budgeted $19 for a taxi ride (excluding tip) how
    7·1 answer
  • Please provide answer to 3-3 x 6 + 2 =
    6·2 answers
  • -2x+11+6x<br><br> I need help
    8·1 answer
  • Cooper is opening an online savings account to hold his $20,000 emergency fund. The online account pays 1.5% interest compounded
    10·1 answer
  • Your broker charges you 2.5% commission on the market value of bonds you buy or sell. If you wish to buy a par value $1,000 bond
    15·2 answers
  • 1
    14·1 answer
  • Instruction
    8·1 answer
  • 5. How many standard deviations from the mean is the weight of 190 people?
    13·1 answer
  • How many feet of border are needed to go around a square bulletin board that is 4.5 ft on each side?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!