Answer:
We are given that 4 lb of candies are bought for $9.00
Therefore, the price of 1 lb of candies is:

Now the amount of candies that can bought for $12.00 is:
lb
Therefore, 5.3333 lb of candies can be bought for $12.00
6m> 60
m>10
m is greater than or equal to 10
To find the circumference, you will use the formula for finding circumference of a circle.
I used the true value of pi for the calculations.
C = pi x d
pi x 27.13
C = 85.77mm
Part A: x = -5/4, 3 || (-5/4, 0) (3, 0)
To find the x-intercepts, we need to know where y is equal to 0. So, we will set the function equal to 0 and solve for x.
4x^2 - 7x - 15 = 0
4 x 15 = 60 || -12 x 5 = 60 || -12 + 5 = -7
4x^2 - 12x + 5x - 15 = 0
4x(x - 3) + 5(x - 3) = 0
(4x + 5)(x - 3) = 0
4x + 5 = 0
x = -5/4
x - 3 = 0
x = 3
Part B: minimum, (7/8, -289/16)
The vertex of the graph will be a minimum. This is because the parabola is positive, meaning that it opens to the top.
To find the coordinates of the parabola, we start with the x-coordinate. The x-coordinate can be found using the equation -b/2a.
b = -7
a = 4
x = -(-7) / 2(4) = 7/8
Now that we know the x-value, we can plug it into the function and solve for the y-value.
y = 4(7/8)^2 - 7(7/8) - 15
y = 4(49/64) - 49/8 - 15
y = 196/64 - 392/64 - 960/64
y = -1156/64 = -289/16 = -18 1/16
Part C:
First, start by graphing the vertex. Then, use the x-intercepts and graph those. At this point we should have three points in a sort of triangle shape. If we did it right, each of the x-values will be an equal distance from the vertex. After we have those points graphed, it is time to draw in the parabola. Knowing that the parabola is positive, we draw in a U shape that passes through each of the three points and opens toward the top of the coordinate grid.
Hope this helps!