2.0 + 0.5 + 0.01 hope this helps
Answer:
64
Step-by-step explanation:
Find the area of both triangles inside the bigger triangle and add them together.
Use the Pythagorean theorem to find the missing length of the leg in the smallest triangle:
a² + b² = c²
8² + b² = 10²
64 + b² = 100
36 = b²
6 = b
Calculate the area of the smaller triangle:
1/2(<em>b</em>x<em>h</em>)
1/2(6 x 8)
1/2(48)
24
Calculate the area of the bigger triangle:
<em>We know that the longer leg is 10 units because we were able to subtract the length of the smaller triangle's leg from 16.</em>
1/2(<em>b</em>x<em>h</em>)
1/2(10 x 8)
1/2(80)
40
Add both areas to find the area of the largest triangle:
40 + 24 = 64
Answer:
65
Step-by-step explanation:
Answer:
x=12
Step-by-step explanation:
First you make sure x is on both sides of the equation. So you do 0.7x-5-0.2x=0.2x+1-0.2x. Which just simplifies to 0.5x-5=1. You make sure x is the only thing on that side of the equation so you do 0.5x-5+5=1+5 which simplifies to 0.5x=6. Multiply the equation times 2 to just have x. x=12. The value that makes true of x is 12.
How do linear, quadratic, and exponential functions compare?
Answer:
How can all the solutions to an equation in two variables be represented?
<u><em>The solution to a system of linear equations in two variables is any ordered pair x,y which satisfies each equation independently. U can Graph, solutions are points at which the lines intersect.</em></u>
<u><em /></u>
<u><em>How can all the solutions to an equation in two variables be represented?</em></u>
<u><em>you can solve it by Iterative method and Newton Raphson's method.</em></u>
<u><em /></u>
<u><em>How are solutions to a system of nonlinear equations found?
</em></u>
Solve the linear equation for one variable.
Substitute the value of the variable into the nonlinear equation.
Solve the nonlinear equation for the variable.
Substitute the solution(s) into either equation to solve for the other variable.
<u><em>
</em></u>
<u><em>How can solutions to a system of nonlinear equations be approximated? U can find the solutions to a system of nonlinear equations by finding the points of intersection. The points of intersection give us an x value and a y value. Using the example system of nonlinear equations, let's look at how u can find approximate solutions.</em></u>