First, we are given that the inscribed angle of arc CB which is angle D is equal to 65°. This is half of the measure of the arc which is equal to the measure of the central angle, ∠O.
m∠O = 2 (65°) = 130°
Also, the measure of the angles where the tangent lines and the radii meet are equal to 90°. The sum of the measures of the angle of a quadrilateral ACOB is equal to 360°.
m∠O + m∠C + m∠B + m∠A = 360°
Substituting the known values,
130° + 90° + 90° + m∠A = 360°
The value of m∠A is equal to 50°.
<em>Answer: 50°</em>
That’s the answer just make it into a fraction it is already simplified
To find the total amount
The formula is
A=p (1+r)^t
A total amount?
P present value 1050
R interest rate 0.06
T time 25 years
A=1,050×(1+0.06)^(25)=4,506.46
Interest amount
I=A-p
I=4,506.46−1,050
I=3,456.46
The answer would be
m= -25
Answer:
$3100 is invested at 9%
$4900 is invested at 11%
Step-by-step explanation:
Let's take "x" be the amount invested at 9%.
(x + 1800) is invested in another account at 11%.
The interest amount earned by the two accounts is $818.
Here we can use the simple interest formula and find the amount invested in each account.
Simple interest (I) = , where P- is the principal , N is the number of years and R is the interest rate.
Simple interest =
0.09x + 0.11(x+1800) = 818
Now we have to simplify and find the value of x .
Use the distributive property and simplify the second term.
0.09x + 0.11x + 198 = 818
0.2x + 198 = 818
0.2x =818 - 198
0.2x = 620
x = 620/0.2
x = 3100.
So $3100 is invested at 9%
x + 1800 = 3100 + 1800
= $4900
$4900 is invested at 11%
Hope this helped.