1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
3 years ago
14

∆ABC ≅ ∆A'B'C' because you can rotate the pre-image 180° about the origin and translating it 2 units right, which is a sequence

of rigid motions. Question 1 options: True False
Mathematics
1 answer:
Nina [5.8K]3 years ago
6 0

Answer:

Did anyone get an answer?

Step-by-step explanation:


You might be interested in
A company's stock begins the week with a price of $43.85 per share. THe price changes by +$2.70 each day for the first two days,
mixas84 [53]

Given:

Initial price of the stock=$43.85

Change for the first two days=+$2.70

Change for next two days=-$1.10

Last day=-$4.45

The objective is to find the price at the last day.

Let's take the price at final day as <em>x</em>.

\begin{gathered} x=43.85+2.70+2.70-1.10-1.10-4.45 \\ x=42.6 \end{gathered}

Hence, the price of the stock at the last day is $42.6

5 0
1 year ago
Please help asap! thx
vovikov84 [41]

Answer:

y = 0

Step-by-step explanation:

The given sinusoidal equation is y = 2 \cdot sin \left(\dfrac{\pi}{2} \cdot x + 3 \right)

The general form of the sin function is presented as follows;

y = A·sin(B·(x - C)) + D

Where;

A = The amplitude

The period, T = 2·π/B

The frequency, f = B/2·π

C = The horizontal shift

D = The vertical shift

By comparison with the given sine function, we have;

The amplitude, A = 2

The frequency, f = B/2·π = π/2/(2·π) = 1/4

The frequency, f = 1/4 Hz

C = The horizontal shift = 3/(π/2) = 6/π

The vertical shift, D = 0

Given that the mid line of the parent function, sin(x), is the line y = 0, and that the vertical shift is 0, the midline of the function, y = 2 \cdot sin \left(\dfrac{\pi}{2} \cdot x + 3 \right), is therefore, the line;

y = 0.

3 0
3 years ago
Please help. Will mark Brainliest to whoever gets it right! :)
levacccp [35]

Answer:

A's average speed is 100. I did this same thing and passed my grade.

6 0
3 years ago
Read 2 more answers
Can someone help me pls
Simora [160]
Sorry I can not help u right now
4 0
3 years ago
Read 2 more answers
Match the expressions with their equivalent simplified expressions.
Tasya [4]

Answer:

\sqrt[4]{\frac{16x^6y^4}{81x^2y^8}}\rightarrow\frac{2x}{3y}\\\sqrt[4]{\frac{81x^2y^{10}}{81x^6y^6}} \rightarrow\frac{3y}{2x}\\\sqrt[3]{\frac{64x^8y^7}{125x^2y^{10}}}\rightarrow\frac{4x^2}{5y}\\\sqrt[5]{\frac{243x^{17}y^{16}}{32x^7y^{21}}}\rightarrow\frac{3x^2}{2y}\\\sqrt[5]{\frac{32x^{12}y^{15}}{243x^7y^{10}}} \rightarrow\frac{2xy}{3}\\\sqrt[4]{\frac{16x^{10}y^{9}}{256x^2y^{17}}}\rightarrow\frac{x}{2y}


Step-by-step explanation:

\sqrt[4]{\frac{16x^6y^4}{81x^2y^8}} =\sqrt[4]{\frac{(2^4)(x^{6-2})(y^{4-8})}{(3^4)}} =\sqrt[4]{\frac{2^4x^4y^{-4}}{3^4}} =\frac{2xy^{-1}}{3}=\frac{2x}{3y}

\sqrt[4]{\frac{81x^2y^{10}}{81x^6y^6}} =\sqrt[4]{\frac{(3^4)(x^{2-6})(y^{10-6})}{(2^4)}} =\sqrt[4]{\frac{3^4x^{-4}y^{4}}{2^4}} =\frac{3x^{-1}y^1}{3}=\frac{3y}{2x}

\sqrt[3]{\frac{64x^8y^7}{125x^2y^{10}}} =\sqrt[3]{\frac{(4^3)(x^{8-2})(y^{7-10})}{(5^3)}} =\sqrt[3]{\frac{4^3x^6y^{-3}}{5^3}} =\frac{4x^2y^{-1}}{5}=\frac{4x^2}{5y}

\sqrt[5]{\frac{243x^{17}y^{16}}{32x^7y^{21}}} =\sqrt[5]{\frac{(3^5)(x^{17-7})(y^{16-21})}{(2^5)}} =\sqrt[5]{\frac{3^5x^{10}y^{-5}}{2^5}} =\frac{3x^2y^{-1}}{2}=\frac{3x^2}{2y}

\sqrt[5]{\frac{32x^{12}y^{15}}{243x^7y^{10}}} =\sqrt[5]{\frac{(2^5)(x^{12-7})(y^{15-10})}{(3^5)}} =\sqrt[5]{\frac{2^5x^{5}y^{5}}{3^5}} =\frac{2x^1y^{1}}{3}=\frac{2xy}{3}

\sqrt[4]{\frac{16x^{10}y^{9}}{256x^2y^{17}}} =\sqrt[4]{\frac{(2^4)(x^{10-2})(y^{9-17})}{(4^4)}} =\sqrt[4]{\frac{2^4x^{8}y^{-8}}{4^4}} =\frac{2x^{1}y^{-1}}{4}=\frac{x}{2y}

Thus,

\sqrt[4]{\frac{16x^6y^4}{81x^2y^8}}\rightarrow\frac{2x}{3y}\\\sqrt[4]{\frac{81x^2y^{10}}{81x^6y^6}} \rightarrow\frac{3y}{2x}\\\sqrt[3]{\frac{64x^8y^7}{125x^2y^{10}}}\rightarrow\frac{4x^2}{5y}\\\sqrt[5]{\frac{243x^{17}y^{16}}{32x^7y^{21}}}\rightarrow\frac{3x^2}{2y}\\\sqrt[5]{\frac{32x^{12}y^{15}}{243x^7y^{10}}} \rightarrow\frac{2xy}{3}\\\sqrt[4]{\frac{16x^{10}y^{9}}{256x^2y^{17}}}\rightarrow\frac{x}{2y}

3 0
4 years ago
Other questions:
  • 3x+1=2 what’s is x equal to???please help me
    14·1 answer
  • Non-intersecting lines that are separated by equal distances at every point can best be described as _____.
    12·2 answers
  • I would really like help please
    9·1 answer
  • Traders often buy foreign currency in hope of making money when the currency's value changes. For example, on a particular day,
    14·1 answer
  • <img src="https://tex.z-dn.net/?f=x%20%5E%7B2%7D%20%20%2B%202x%20-%2015" id="TexFormula1" title="x ^{2} + 2x - 15" alt="x ^{2}
    6·1 answer
  • Which of the following angles have a greater measure than angle 5
    6·2 answers
  • Write the decimal equivalent for each fraction.<br> − 1 2 1 3 − 1 4 1 5 1 6 − 1 8 1 10
    14·1 answer
  • Find the exact value cos5pi/6
    10·1 answer
  • Which expressions have value between 1 and 2? choose all that apply.
    5·1 answer
  • 3RD ATTEMPT!!! REAL ANSWERS ONLY!!! <br> Draw u + v + w.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!