Answer:
Step-by-step explanation:You can dowly/3fcEdSxnload the ans
wer here. Link below!
bit.
Answer:
0.13, 1.6, 2.2, 48.6, 49.2, 153.7
A flip the equation so the x is in front then the arrow on the line graph should be pointing the way the x is and open circle because it isn’t equal to.
3b+5r=2 gallons of cabbage red
1r+7b=2gallons of egplant
1 gallon of cabbage sells for 22 (means 2 gallos is 44)
1 gallon of egplant is 26 (means 2 gallons is 52)
3b+5r=44
r+7b=52
r+7b=52
miinus 7b from both sides
r=52-7b
sub 52-7b for r in othe equestion
3b+5(52-7b)=44
3b+260-35b=44
-32b+260=44
minus 260 from both sides
-32b=-216
divide both sides by -32
b=6.75
r=52-7b
r=52-7(6.75)
r=52-47.25
r=4.75
3blue+5r=2gallons
5+3=8
8units=2gallons
4units=1gallon
1unit=1quart
therefor
1 quart of blue paint is $6.75
1 quart of red paint is $4.75
Answer:

Step-by-step explanation:
A(t) is the amount of salt in the tank at time t.
dA / dt = rate of salt flowing into the tank - rate of salt going out of the tank
dA / dt = (1 g/L)*(5 L/min) - (A(t)/250 g/L) * (5L/min)
dA / dt = 5 g/min - (A(t) / 50) g/min
![\frac{dA}{dt}+\frac{A(t)}{50} = 5\\\\The\ integrating\ factor(IF)= e^{\int\limits \frac{1}{50}dt }=e^{\frac{t}{50} }\\\\Multiplying\ through\ by\ the\ I.F:\\\\\frac{dA}{dt}*e^{\frac{t}{50} }+\frac{A(t)}{50}*e^{\frac{t}{50} } = 5*e^{\frac{t}{50} }\\\\Integrating \ both \ sides:\\\\\int\limits[ \frac{dA}{dt}*e^{\frac{t}{50} }+\frac{A(t)}{50}*e^{\frac{t}{50} }] dt=\int\limits 5e^{\frac{t}{50} } dt\\\\A(t)e^{\frac{t}{50} } =\int\limits 5e^{\frac{t}{50} } dt\\\\](https://tex.z-dn.net/?f=%5Cfrac%7BdA%7D%7Bdt%7D%2B%5Cfrac%7BA%28t%29%7D%7B50%7D%20%3D%205%5C%5C%5C%5CThe%5C%20integrating%5C%20factor%28IF%29%3D%20e%5E%7B%5Cint%5Climits%20%5Cfrac%7B1%7D%7B50%7Ddt%20%7D%3De%5E%7B%5Cfrac%7Bt%7D%7B50%7D%20%7D%5C%5C%5C%5CMultiplying%5C%20through%5C%20by%5C%20the%5C%20I.F%3A%5C%5C%5C%5C%5Cfrac%7BdA%7D%7Bdt%7D%2Ae%5E%7B%5Cfrac%7Bt%7D%7B50%7D%20%7D%2B%5Cfrac%7BA%28t%29%7D%7B50%7D%2Ae%5E%7B%5Cfrac%7Bt%7D%7B50%7D%20%7D%20%3D%205%2Ae%5E%7B%5Cfrac%7Bt%7D%7B50%7D%20%7D%5C%5C%5C%5CIntegrating%20%5C%20both%20%5C%20sides%3A%5C%5C%5C%5C%5Cint%5Climits%5B%20%20%5Cfrac%7BdA%7D%7Bdt%7D%2Ae%5E%7B%5Cfrac%7Bt%7D%7B50%7D%20%7D%2B%5Cfrac%7BA%28t%29%7D%7B50%7D%2Ae%5E%7B%5Cfrac%7Bt%7D%7B50%7D%20%7D%5D%20dt%3D%5Cint%5Climits%20%205e%5E%7B%5Cfrac%7Bt%7D%7B50%7D%20%7D%20dt%5C%5C%5C%5CA%28t%29e%5E%7B%5Cfrac%7Bt%7D%7B50%7D%20%7D%20%3D%5Cint%5Climits%20%205e%5E%7B%5Cfrac%7Bt%7D%7B50%7D%20%7D%20dt%5C%5C%5C%5C)
