Answer:
Sound waves from the source of sound are trapped by the <em><u>pinna</u></em><em><u> </u></em>and collected to the to the <em><u>auditory</u></em><em><u> </u></em><em><u>canal</u></em><em><u> </u></em>where they are concentrated to the middle ear consisting of the <em><u>ear</u></em><em><u> </u></em><em><u>drum</u></em><em><u> </u></em><em><u>(</u></em><em><u>stirrup</u></em><em><u>,</u></em><em><u> </u></em><em><u>anvil</u></em><em><u>,</u></em><em><u> </u></em><em><u>hammer</u></em><em><u>)</u></em><em><u>.</u></em><em><u> </u></em>Here the sound waves are amplified further to the<em><u> </u></em><em><u>semi-circular</u></em><em><u> </u></em><em><u>canal</u></em><em><u> </u></em>where these waves are converted to impulses and sent to the <em><u>brain</u></em> via the <em><u>auditory</u></em><em><u> </u></em><em><u>nerve</u></em> for interpretation
Answer:

Explanation:
We need to write the polar form of the given equation :

Put
and 
![x^2+(y-6)^2=36\\\\(r\cos\theta)^2+(r\sin\theta-6)^2=36\\\\r^2\cos^2\theta+r^2\sin^2\theta+36-12r\sin\theta=36\ \ [\because (a-b)^2=a^2+b^2-2ab]\\\\r^2(\cos^2\theta+\sin^2\theta)-12r\sin\theta=0\\\\\text{We know that}, \cos^2\theta+\sin^2\theta=1\\\\r^2-12r\sin\theta=1](https://tex.z-dn.net/?f=x%5E2%2B%28y-6%29%5E2%3D36%5C%5C%5C%5C%28r%5Ccos%5Ctheta%29%5E2%2B%28r%5Csin%5Ctheta-6%29%5E2%3D36%5C%5C%5C%5Cr%5E2%5Ccos%5E2%5Ctheta%2Br%5E2%5Csin%5E2%5Ctheta%2B36-12r%5Csin%5Ctheta%3D36%5C%20%5C%20%5B%5Cbecause%20%28a-b%29%5E2%3Da%5E2%2Bb%5E2-2ab%5D%5C%5C%5C%5Cr%5E2%28%5Ccos%5E2%5Ctheta%2B%5Csin%5E2%5Ctheta%29-12r%5Csin%5Ctheta%3D0%5C%5C%5C%5C%5Ctext%7BWe%20know%20that%7D%2C%20%5Ccos%5E2%5Ctheta%2B%5Csin%5E2%5Ctheta%3D1%5C%5C%5C%5Cr%5E2-12r%5Csin%5Ctheta%3D1)
Hence, the above is the polar form of the given equation i.e. 
Mid ocean ridges are formed beneath divergent boundaries
Answer:
able to be trained
calm and relatively friendly
easy to feed
I might be wrong