The equation you have to solve is 1.50 + (0.75 • 6). First, you solve what is in the parenthesis, 0.75 • 6 = 4.50. Now you simply add 1.50 and 4.50 to get $6, the total cost for 7 hours worth of parking.
F(2) = g(-2)
hope this helped :)
We will use demonstration of recurrences<span>1) for n=1, 10= 5*1(1+1)=5*2=10, it is just
2) assume that the equation </span>10 + 30 + 60 + ... + 10n = 5n(n + 1) is true, <span>for all positive integers n>=1
</span>3) let's show that the equation<span> is also true for n+1, n>=1
</span><span>10 + 30 + 60 + ... + 10(n+1) = 5(n+1)(n + 2)
</span>let be N=n+1, N is integer because of n+1, so we have
<span>10 + 30 + 60 + ... + 10N = 5N(N+1), it is true according 2)
</span>so the equation<span> is also true for n+1,
</span>finally, 10 + 30 + 60 + ... + 10n = 5n(n + 1) is always true for all positive integers n.
<span>
</span>
Answer:
![f(x)=4\sqrt[3]{16}^{2x}](https://tex.z-dn.net/?f=f%28x%29%3D4%5Csqrt%5B3%5D%7B16%7D%5E%7B2x%7D)
Step-by-step explanation:
We believe you're wanting to find a function with an equivalent base of ...
![4\sqrt[3]{4}\approx 6.3496](https://tex.z-dn.net/?f=4%5Csqrt%5B3%5D%7B4%7D%5Capprox%206.3496)
The functions you're looking at seem to be ...
![f(x)=2\sqrt[3]{16}^x\approx 2\cdot2.5198^x\\\\f(x)=2\sqrt[3]{64}^x=2\cdot 4^x\\\\f(x)=4\sqrt[3]{16}^{2x}\approx 4\cdot 6.3496^x\ \leftarrow\text{ this one}\\\\f(x)=4\sqrt[3]{64}^{2x}=4\cdot 16^x](https://tex.z-dn.net/?f=f%28x%29%3D2%5Csqrt%5B3%5D%7B16%7D%5Ex%5Capprox%202%5Ccdot2.5198%5Ex%5C%5C%5C%5Cf%28x%29%3D2%5Csqrt%5B3%5D%7B64%7D%5Ex%3D2%5Ccdot%204%5Ex%5C%5C%5C%5Cf%28x%29%3D4%5Csqrt%5B3%5D%7B16%7D%5E%7B2x%7D%5Capprox%204%5Ccdot%206.3496%5Ex%5C%20%5Cleftarrow%5Ctext%7B%20this%20one%7D%5C%5C%5C%5Cf%28x%29%3D4%5Csqrt%5B3%5D%7B64%7D%5E%7B2x%7D%3D4%5Ccdot%2016%5Ex)
The third choice seems to be the one you're looking for.