1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Illusion [34]
3 years ago
14

Given g(x)=−2x2+1, find the indicated values: g(0)

Mathematics
1 answer:
Ilia_Sergeevich [38]3 years ago
6 0

Answer:

g(0) = 1

Step-by-step explanation:

Plug 0 into the function:

g(x) = -2x² + 1

g(0) = -2(0)² + 1

g(0) = -2(0) + 1

g(0) = 0 + 1

g(0) = 1

You might be interested in
HELP ASAP WILL MARK BRAINLIEST AREA OF FIGURES
Lerok [7]

Answer:

1. 170.083 in³

2. 126π in³

3. 92.106 m³

4. 2412.74 in³

5. 612π m³ and 1922 m³

Step-by-step explanation:

1.

Cylinder:

V = \pi r^{2}h               *Plug in numbers*

(3.14)(2.5)^{2}(7)         *Square 2.5*

(3.14)(6.25)(7)        *Solve*

≈ 137.375in^{3}

Sphere:

V = \frac{4}{3}\pi r^{3}              *Plug in numbers*

\frac{4}{3} (3.14)(2.5)^{3}         *Cube 2.5*

\frac{\frac{4}{3}(3.14)(15.625)}{2}         *Divide by 2 and Solve*

≈ 32.7083 in^{3}

Add both volumes

137.375 + 32.7083 ≈ 170.083in^{3}

2.

Cylinder:

V = \pi r^{2}h         *Plug in numbers*

\pi (3)^{2}(10)            *Square 3*

\pi (9)(10)             *Multiply*

90\pi

Sphere:

V = \frac{4}{3} π r^{3}            *Plug in numbers*

\frac{4}{3}\pi (3)^{3}                   *Cube 3*

\frac{4}{3} \pi (27)                   *Multiply*

36\pi

Add both Volumes to get total

90\pi + 36\pi = 126in^{3}

3.

Sphere:

V = \frac{4}{3}\pi r^{3}              *Plug in numbers*

\frac{4}{3} (3.14)(3)^{3}            *Cube 3*

\frac{4}{3} (3.14)(27)            *Multiply*

113.04m^{3}

Cone:

V = \frac{\pi r^{2}h}{3}             *Plug in numbers*

\frac{(3.14)(2)^{2}(5)}{3}           *Square 2*

\frac{(3.14)(4)(5)}{3}             *Solve*

20.93m^{3}

Subtract the volumes to get the volume of the blue area

113.04 - 20.93 = 92.106m^{3}

4.

Sphere:

V = \frac{4}{3} \pi r^{3}            *Plug in numbers*

\frac{4}{3}\pi (8)^{3}                 *Cube 8*

\\\frac{4}{3}\pi (512)               *Multiply*

\\\\\pi (682.6)              *Solve*

2133.66in^{3}           *Divide by 2 since it's a hemisphere*

Cone:

V = \frac{\pi r^{2}h}{3}            *Plug in numbers*

\frac{\pi (8)^{2}(20)}{3}              *Square 8*

\frac{\pi (64)(20)}{3}              *Multiply and Divide*

1340.41 in^{3}

Add both volumes

1072.33 + 1340.41 = 2412.74in^{3}

5.

Cylinder:

V = \pi r^{2}h            *Plug in numbers*

\pi (6)^{2}(16)              *Square 6*

\pi (36)(16)             *Multiply*

576\pi

Cone:

V = \frac{\pi r^{2}h}{3}            *Plug in numbers*

\frac{\pi (6)^{2}3}{3}                  *Square 6*

36\pi

Add both volumes

576\pi + 36\pi = 612\pi m^{3}

Alternative: *Multiply π*

1922m^{3}

4 0
3 years ago
Read 2 more answers
13/15 in simplest form
N76 [4]
You can't put it in simplest form 13 can't go lower evenly
4 0
4 years ago
Read 2 more answers
What is 43.982 rounded to the nearest hundredth
Masja [62]

Answer:

43.99

Step-by-step explanation:

because I said it was

3 0
3 years ago
Read 2 more answers
Does anyone want to play tarkov and run customs or something lol? add me on disc destructer11#0001
lesya692 [45]

Answer:

Step-by-step explanation:

Mabye later

4 0
2 years ago
Please this is due tonight!!! Express given logarithm in terms of a, b and c.
KATRIN_1 [288]

\textit{Logarithm Change of Base Rule} \\\\ \log_a b\implies \cfrac{\log_c b}{\log_c a}\qquad \qquad c= \begin{array}{llll} \textit{common base for }\\ \textit{numerator and}\\ denominator \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \log_5(18)\implies \cfrac{\log(18)}{\log(5)}\implies \cfrac{\log(2\cdot 3\cdot 3)}{\log(5)}\implies \cfrac{\log(2)+\log(3)+\log(3)}{\log(5)}

\begin{cases} \log(3)=a\\ \log(2)=b\\ \log(5)=c \end{cases}\implies \cfrac{b+a+a}{c}\implies \cfrac{b+2a}{c} \\\\[-0.35em] ~\dotfill\\\\ \log_5^2(18)\implies [\log_5(18)]^2\implies \left( \cfrac{b+2a}{c} \right)^2\implies \cfrac{(b+2a)^2}{c^2} \\\\[-0.35em] ~\dotfill\\\\ ~\hfill \cfrac{b^2+4ab+4a^2}{c^2}~\hfill

8 0
3 years ago
Other questions:
  • Trent is drawing a diagram of his house for a school project. He decides that every 5 feet in real life should be 2 inches in th
    14·1 answer
  • A roller coaster has a height of 325 feet before its first hill, and the bottom of the hill is 30 feet off the ground. What is t
    7·2 answers
  • A 10 foot ramp must make an angle of 30 degrees with the ground if it is to reach a certain window. What angle must a 15-foot ra
    6·2 answers
  • A company sells widgets. The amount of profit, y, made by the company, is related to the selling price of each widget, x, by the
    15·2 answers
  • 62.3÷5.5 round to nearest 1000​
    12·2 answers
  • What is the area of a triangle that is 14cm 11cm bottom is 20cm and top to bottom is 7.4cm
    5·1 answer
  • What is the slope between (3,5) and (3,14)
    5·2 answers
  • What is the domain of the function<br> y=x?
    9·2 answers
  • Which shape has 74 sides
    6·2 answers
  • 1/3 of the fruit in Little Red Riding Hood’s basket are apples, 4/9 are oranges, and the rest are bananas (what, no cupcakes?).
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!