1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
HACTEHA [7]
3 years ago
5

Sibal started with $500 in a bank account that does not earn interest. In the middle of every month, she withdraws 15 of the acc

ount balance. Which recursive function rule models Sibal’s balance at the end of each month?
an=4/5⋅an−1 and a1=500 ​
an=500⋅an−1 ​ and a1=1/5
an=1/5⋅an−1 ​ and a1=500
an=500⋅an−1 and a1=4/5
Mathematics
1 answer:
Otrada [13]3 years ago
4 0
After every month's withdrawals, 4/5 of the original amount at the start of the month will remain. The amount at the start of every month will change. Thus:
an = 4/5 (an-1) ; where a1 = 500.
You might be interested in
Consider the vector add = a + b = [13 12 11 10 10] and sub = a - b = [-11 - 6 - 14 8]. Find the vector a and b.
prisoha [69]

Answer:

a = [1   3   5   7   9] and b = [12   9   6   3   1]

Step-by-step explanation:

The addition of two vectors a and b is defined as

a + b = [13   12   11   10   10]                .... (1)

The subtraction of two vectors a and b is defined as

a - b = [-11   - 6   - 1   4    8]                 .... (2)

After adding (1) and (2), we get

(a + b) + (a - b)= [13   12   11   10   10] + [-11   - 6   - 1   4    8]

On simplification we get

2a = [13-11   12-6   11-1   10+4   10+8]

2a = [2   6   10   14   18]

Divide both sides by 2.

a = [1   3   5   7   9]

Substitute the value of vector a in equation (1).

[1   3   5   7   9] + b = [13   12   11   10   10]

Subtract vector a from both sides.

b = [13   12   11   10   10] - [1   3   5   7   9]

On simplification we get

b = [13-1   12-3   11-5   10-7   10-9]

b = [12   9   6   3   1]

Therefore the vectors a and b are defined as a = [1   3   5   7   9] and b = [12   9   6   3   1].

4 0
3 years ago
Match each addition operation to the correct sum. 131.87 -23.24
konstantin123 [22]

Answer:

131.87-23.24=108.63

Step-by-step explanation:

To solve this problem, let's line up the problem. To make it easier, we can start by ignoring the decimals.

                                             13187

                                            - 2324

                                           ______

                                             10863

And then, since there were decimals in the first place, we have to add them back in.

                                            10863→108.63

6 0
3 years ago
Need help asap im not good at math
vladimir2022 [97]

OK.

Let g(x) = ax²

We have the point (3, 1).

Substitute x = 3 and g(x) = 1:

1 = a(3²)

9a = 1    |divide both sides by 9

a = 1/9

Therefore your answer is

g(x)=\dfrac{1}{9}x^2=\left(\dfrac{1}{3}x\right)^2

6 0
3 years ago
Jada has a stand in the marketplace where she sells ground cumin. Her weekly expenses are $300, and she sells her cumin at a fix
Black_prince [1.1K]

Answer:

$7.5

40 kg

Step-by-step explanation:

Expenses= $300 per week

120x= 300+600

120x=900

x= 900/120= $7.5 per kg

300/7.5= 40 kg to be sold to cover weekly expenses

4 0
3 years ago
[tex]cos {}^{4} α+sin {}^{4} α= \frac{1}{4} (3+cos4α)<br>Prove:<br>​
asambeis [7]

Given:

\cos^4 \alpha+\sin^4\alpha=\dfrac{1}{4}(3+\cos 4 \alpha)

To prove:

The given statement.

Proof:

We have,

\cos^4 \alpha+\sin^4\alpha=\dfrac{1}{4}(3+\cos 4 \alpha)

LHS=\cos^4 \alpha+\sin^4\alpha

LHS=(\cos^2 \alpha)^2+(\sin^2 \alpha)^2

LHS=(\cos^2 \alpha+\sin^2\alpha)^2-2\sin ^2\alpha\cos^2 \alpha     [\because a^2+b^2=(a+b)^2-2ab]

LHS=(1)^2-2(1-\cos^2 \alpha)\cos^2 \alpha      [\because \cos^2 \alpha+\sin^2\alpha=1]

LHS=1-2\cos^2 \alpha+2\cos^4 \alpha

Now,

RHS=\dfrac{1}{4}(3+\cos 4 \alpha)

RHS=\dfrac{1}{4}[3+(2\cos^2 2\alpha-1)]        [\because \cos 2\theta=2\cos^2\theta -1]

RHS=\dfrac{1}{4}[2+2\cos^2 2\alpha]

RHS=\dfrac{1}{4}[2+2(2\cos^2 \alpha-1)^2]        [\because \cos 2\theta=2\cos^2\theta -1]

RHS=\dfrac{1}{4}[2+2(4\cos^4 \alpha-4\cos \alpha+1)]        [\because (a-b)^2=a^2-2ab+b^2]

RHS=\dfrac{1}{4}[2+8\cos^4 \alpha-8\cos \alpha+2]

RHS=\dfrac{1}{4}[4+8\cos^4 \alpha-8\cos \alpha]

RHS=1+2\cos^4 \alpha-2\cos \alpha

RHS=1-2\cos^2 \alpha+2\cos^4 \alpha

LHS=RHS

Hence proved.

8 0
3 years ago
Other questions:
  • Joshua's goal is to sell more than 20 items at a farmers' market. So far, he has sold 6 items. Each of his customers buys 2 item
    6·2 answers
  • 3. 28 – 18/ 2 * 3<br><br> / = divide <br> * = multiply
    12·1 answer
  • Suppose that in the market for ice cream the elasticity of supply is equal to 1.50. How would a 10% increase in the price of ice
    7·1 answer
  • Can some one help me <br> ????????
    12·2 answers
  • PLEASE SOMEONE HELP ASAP
    10·2 answers
  • H
    9·2 answers
  • Si Jose recarga su teléfono con ₡6000 y realiza 5 llamadas de 4 minutos, 3 llamadas de 6 minutos y manda 20 mensajes ¿cuanta rec
    6·1 answer
  • 7. Our solutions are the
    8·1 answer
  • Describe the term linear pair, and give an example from the diagram.
    14·1 answer
  • What is 1 as a decimal?<br> 2.75<br> 0.4<br> 0.364<br> 0.36
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!