Answer:
Exponential decay.
Step-by-step explanation:
You can use a graphing utility to check this pretty quickly, but you can also look at the equation and get the answer. Since the function has a variable in the exponent, it definitely won't be a linear equation. Quadratic equations are ones of the form ax^2 + bx + c, and your function doesn't look like that, so already you've ruled out two answers.
From the start, since we have a variable in the exponent, we can recognize that it's exponential. Figuring out growth or decay is a little more complicated. Having a negative sign out front can flip the graph; having a negative sign in the exponent flips the graph, too. In your case, you have no negatives; just 2(1/2)^x. What you need to note here, and you could use a few test points to check, is that as x gets bigger, (1/2) will get smaller and smaller. Think about it. When x = 0, 2(1/2)^0 simplifies to just 2. When x = 1, 2(1/2)^1 simplifies to 1. Already, we can tell that this graph is declining, but if you want to make sure, try a really big value for x, like 100. 2(1/2)^100 is a value very very very veeery close to 0. Therefore, you can tell that as the exponent gets larger, the value of the function goes down and gets closer and closer to zero. This means that it can't be exponential growth. In the case of exponential growth, as the exponent gets bigger, your output should increase, too.
This question has to do with making an approximation based on the diagram of the angle. Angle KLM is an obtuse angle meaning it is larger then 90° but is also less than 180°. The only choices that lie within this range are choices B and D. However, it is safe to assume that angle KLM is closer to 180° than to 90° based on the diagram, therefore the answer must be choice B.
I hope this helps.
![\begin{array}{rrrrr} 10x&-&18y&=&2\\ -5x&+&9y&=&-1 \end{array}~\hfill \implies ~\hfill \stackrel{\textit{second equation }\times 2}{ \begin{array}{rrrrr} 10x&-&18y&=&2\\ 2(-5x&+&9y&)=&2(-1) \end{array}} \\\\[-0.35em] ~\dotfill\\\\ \begin{array}{rrrrr} 10x&-&18y&=&2\\ -10x&+&18y&=&-2\\\cline{1-5} 0&+&0&=&0 \end{array}\qquad \impliedby \textit{another way of saying \underline{infinite solutions}}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%20-5x%26%2B%269y%26%3D%26-1%20%5Cend%7Barray%7D~%5Chfill%20%5Cimplies%20~%5Chfill%20%5Cstackrel%7B%5Ctextit%7Bsecond%20equation%20%7D%5Ctimes%202%7D%7B%20%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%202%28-5x%26%2B%269y%26%29%3D%262%28-1%29%20%5Cend%7Barray%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%20-10x%26%2B%2618y%26%3D%26-2%5C%5C%5Ccline%7B1-5%7D%200%26%2B%260%26%3D%260%20%5Cend%7Barray%7D%5Cqquad%20%5Cimpliedby%20%5Ctextit%7Banother%20way%20of%20saying%20%5Cunderline%7Binfinite%20solutions%7D%7D)
if we were to solve both equations for "y", we'd get

notice, the 1st equation is really the 2nd in disguise, since both lines are just pancaked on top of each other, every point in the lines is a solution or an intersection, and since both go to infinity, well, there you have it.
Answer: £2520
Step-by-step explanation:
You have $4000 to convert to British pounds (?). 4,000*.63=2,520.
Answer:
32 pennies to each friend and 314 pennies remaining
Step-by-step explanation:
For the first step, we need to divide 128 by 4 to get the amount of pennies she gave to each friend: 128/4 = 32
For the second step, we need to subtract 128 from 442 to find out how many pennies she has left: 442-128 = 314
Hope this helps!