Given vertices of the Quadrilateral ABCD :
A(−2, 2),
B(−2, 4),
C(2, 4), and
D(2, 2).
The quadrilateral is then transformed using the rule (x − 2, y + 8).
Let us find the coordinate A', B', C', and D' by rule (x − 2, y + 8).
A(−2, 2) ---> (-2-2 , 2+8) = (-4, 10)
B(−2, 4) ---> (-2-2, 4+8) = (-4, 12)
C(2, 4), ---> ( 2-2, 4+8) = (0, 12)
D(2, 2) ---> (2-2, 2+8) = (0, 10).
So, <u>the coordinates of A', B', C', and D' are </u>
<u>A'(-4, 10), B'(-4, 12), C'(0, 12), and D'(0, 10).</u>
For the new coordinates we get we can say that each of the coordinate A', B', C', and D' moved 2 unit left and 8 units up.