Answer:
The explicit rule of the geometric sequence
aₙ = 187.5 (0.8)ⁿ⁻¹
Step-by-step explanation:
<u><em> Step(i):-</em></u>
Given that the third term of the sequence = 120
tₙ = a rⁿ⁻¹
t₃ = a r³⁻¹ = ar²
120 = ar² ..(i)
Given that the fifth term of the given geometric sequence = 76.8
tₙ = a rⁿ⁻¹
t₅ = a r⁵⁻¹ = a r⁴
76.8 = a r⁴...(ii)
<u><em>Step(ii):</em></u>-
Dividing (ii) and (i)

r² = 0.64
r =√ 0.64 = 0.8
Substitute r= 0.8 in equation (i)
120 = ar²
120 = a(0.8)²
⇒ 
<u><em>Step(iii):-</em></u>
The explicit rule of the geometric sequence
aₙ = a rⁿ⁻¹
put a= 187.5 and r = 0.8
aₙ = 187.5 (0.8)ⁿ⁻¹
Ur answer is B............!!!!!!
Hope its right!!
Answer:
y=0
Step-by-step explanation:
All y-values along the x-axis are equal to 0.
(Простите, пожалуйста, мой английский. Русский не мой родной язык. Надеюсь, у вас есть способ перевести это решение. Если нет, возможно, прилагаемое изображение объяснит достаточно.)
Use the shell method. Each shell has a height of 3 - 3/4 <em>y</em> ², radius <em>y</em>, and thickness ∆<em>y</em>, thus contributing an area of 2<em>π</em> <em>y</em> (3 - 3/4 <em>y</em> ²). The total volume of the solid is going to be the sum of infinitely many such shells with 0 ≤ <em>y</em> ≤ 2, thus given by the integral

Or use the disk method. (In the attachment, assume the height is very small.) Each disk has a radius of √(4/3 <em>x</em>), thus contributing an area of <em>π</em> (√(4/3 <em>x</em>))² = 4<em>π</em>/3 <em>x</em>. The total volume of the solid is the sum of infinitely many such disks with 0 ≤ <em>x</em> ≤ 3, or by the integral

Using either method, the volume is 6<em>π</em> ≈ 18,85. I do not know why your textbook gives a solution of 90,43. Perhaps I've misunderstood what it is you're supposed to calculate? On the other hand, textbooks are known to have typographical errors from time to time...
Answer:
Denote AH as height of triangle ABC, with H lies on BC.
Applying sine theorem:
AH/AC = sin 60
=> AH = AC x sin 60 = 47 x sqrt(3)/2 = 40.7
=> Area of triangle ABC is calculated by:
A = AH x BC x (1/2) = 40.7 x 30 x (1/2) = 610.5 = ~611
=> Option C is correct.
Hope this helps!
:)