To find the volume of a triangular pyramid, the formula is:
![V=\frac{1}{3}(Area\text{ }of\text{ }thebase)(height)](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B1%7D%7B3%7D%28Area%5Ctext%7B%20%7Dof%5Ctext%7B%20%7Dthebase%29%28height%29)
So we start by finding the area of the base, which is in the shape of a right triangle in this case.
The area of a right triangle is equal to 1/2 x base x height.
![\begin{gathered} A=\frac{1}{2}bh \\ \\ A=\frac{1}{2}(5)(6) \\ \\ A=15\text{ square feet} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20A%3D%5Cfrac%7B1%7D%7B2%7Dbh%20%5C%5C%20%20%5C%5C%20A%3D%5Cfrac%7B1%7D%7B2%7D%285%29%286%29%20%5C%5C%20%20%5C%5C%20A%3D15%5Ctext%7B%20square%20feet%7D%20%5Cend%7Bgathered%7D)
We use this area to find the volume.
![\begin{gathered} V=\frac{1}{3}Ah \\ \\ V=\frac{1}{3}(15)(6) \\ \\ V=30\text{ cubic feet} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20V%3D%5Cfrac%7B1%7D%7B3%7DAh%20%5C%5C%20%20%5C%5C%20V%3D%5Cfrac%7B1%7D%7B3%7D%2815%29%286%29%20%5C%5C%20%20%5C%5C%20V%3D30%5Ctext%7B%20cubic%20feet%7D%20%5Cend%7Bgathered%7D)
The volume of the triangular pyramid is 30 cubic feet.
This is a true statement, or false depending on whether Alfonso actually did or not. There's no proof.
Answer:
14 pushups per min
70 pushups in 5 min
Step-by-step explanation:
Where is the graph? Upload a picture of the graph first