For digits 0 to 9
<span>0,1,3,8 have lines of symmtery
</span>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I hope that helped =)
Answer:
<em><u>First</u></em><em><u> </u></em><em><u>Column</u></em><em><u> </u></em><em><u>top</u></em><em><u>:</u></em>
5. 3. 10
<em><u>Second</u></em><em><u> </u></em><em><u>Column</u></em><em><u> </u></em><em><u>middle</u></em><em><u>:</u></em>
9. 7. 2
<em><u>Third</u></em><em><u> </u></em><em><u>Column</u></em><em><u> </u></em><em><u>bottom</u></em><em><u>:</u></em>
4. 8. 6
<em><u>Hence</u></em><em><u>,</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>grid</u></em><em><u> </u></em><em><u>would</u></em><em><u> </u></em><em><u>be</u></em><em><u>,</u></em>
5. 3. 10
9. 7. 2
4. 8. 6
Answer:
Step-by-step explanation:
The attached photo shows the diagram of quadrilateral QRST with more illustrations.
Line RT divides the quadrilateral into 2 congruent triangles QRT and SRT. The sum of the angles in each triangle is 180 degrees(98 + 50 + 32)
The area of the quadrilateral = 2 × area of triangle QRT = 2 × area of triangle SRT
Using sine rule,
q/SinQ = t/SinT = r/SinR
24/sin98 = QT/sin50
QT = r = sin50 × 24.24 = 18.57
Also
24/sin98 = QR/sin32
QR = t = sin32 × 24.24 = 12.84
Let us find area of triangle QRT
Area of a triangle
= 1/2 abSinC = 1/2 rtSinQ
Area of triangle QRT
= 1/2 × 18.57 × 12.84Sin98
= 118.06
Therefore, area of quadrilateral QRST = 2 × 118.06 = 236.12
Answer:
I think C 45 blocks are the right answer.