Answer:
possible lengths
45 and 2
3 and 20
5 and 18
15 and 6
10 and 9
there perimeter will be
94
46
46
27
38
answer to this question is 15 and 6
The price of 1 gallon is $4.15. You figure this out by dividing 33.20 by 8.
33.20/8 = 4.15
Answer:
proof below
Step-by-step explanation:
Remember that a number is even if it is expressed so n = 2k. It is odd if it is in the form 2k + 1 (k is just an integer)
Let's say we have to odd numbers, 2a + 1, and 2b + 1. We are after the sum of their squares, so we have (2a + 1)^2 + (2b + 1)^2. Now let's expand this;
(2a + 1)^2 + (2b + 1)^2 = 4a^2 + 4a + 4b + 4b^2 + 4b + 2
= 2(2a^2 + 2a + 2b^2 + 2b + 1)
Now the sum in the parenthesis, 2a^2 + 2a + 2b^2 + 2b + 1, is just another integer, which we can pose as k. Remember that 2 times any random integer, either odd or even, is always even. Therefore the sum of the squares of any two odd numbers is always even.
Rational number I believe
Answer:
(a)0.16
(b)0.588
(c)![[s_1$ s_2]=[0.75,$ 0.25]](https://tex.z-dn.net/?f=%5Bs_1%24%20s_2%5D%3D%5B0.75%2C%24%20%200.25%5D)
Step-by-step explanation:
The matrix below shows the transition probabilities of the state of the system.

(a)To determine the probability of the system being down or running after any k hours, we determine the kth state matrix
.
(a)


If the system is initially running, the probability of the system being down in the next hour of operation is the 
The probability of the system being down in the next hour of operation = 0.16
(b)After two(periods) hours, the transition matrix is:

Therefore, the probability that a system initially in the down-state is running
is 0.588.
(c)The steady-state probability of a Markov Chain is a matrix S such that SP=S.
Since we have two states, ![S=[s_1$ s_2]](https://tex.z-dn.net/?f=S%3D%5Bs_1%24%20%20s_2%5D)
![[s_1$ s_2]\left(\begin{array}{ccc}0.90&0.10\\0.30&0.70\end{array}\right)=[s_1$ s_2]](https://tex.z-dn.net/?f=%5Bs_1%24%20%20s_2%5D%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7D0.90%260.10%5C%5C0.30%260.70%5Cend%7Barray%7D%5Cright%29%3D%5Bs_1%24%20%20s_2%5D)
Using a calculator to raise matrix P to large numbers, we find that the value of
approaches [0.75 0.25]:
Furthermore,
![[0.75$ 0.25]\left(\begin{array}{ccc}0.90&0.10\\0.30&0.70\end{array}\right)=[0.75$ 0.25]](https://tex.z-dn.net/?f=%5B0.75%24%20%200.25%5D%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7D0.90%260.10%5C%5C0.30%260.70%5Cend%7Barray%7D%5Cright%29%3D%5B0.75%24%20%200.25%5D)
The steady-state probabilities of the system being in the running state and in the down-state is therefore:
![[s_1$ s_2]=[0.75$ 0.25]](https://tex.z-dn.net/?f=%5Bs_1%24%20s_2%5D%3D%5B0.75%24%20%200.25%5D)