Answer:
x = 8.7
Step-by-step explanation:
Reference angle = 30°
Opposite side length = x
Adjacent side length = 15
Apply trigonometric function, TOA:
Tan 30° = Opp/Adj
Plug in the values
Tan 30° = x/15
Multiply both sides by 15
15*Tan 30° = x
8.66025404 = x
x = 8.7 (nearest tenth)
I’d say the answer would be d
well, we know the ceiling is 6+2/3 high, and Eduardo has 4+1/2 yards only, how much more does he need, well, is simply their difference, let's firstly convert the mixed fractions to improper fractions and then subtract.
![\stackrel{mixed}{6\frac{2}{3}}\implies \cfrac{6\cdot 3+2}{3}\implies \stackrel{improper}{\cfrac{20}{3}} ~\hfill \stackrel{mixed}{4\frac{1}{2}}\implies \cfrac{4\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{9}{2}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{20}{3}-\cfrac{9}{2}\implies \stackrel{using ~~\stackrel{LCD}{6}}{\cfrac{(2\cdot 20)-(3\cdot 9)}{6}}\implies \cfrac{40-27}{6}\implies \cfrac{13}{6}\implies\blacktriangleright 2\frac{1}{6} \blacktriangleleft](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B6%5Cfrac%7B2%7D%7B3%7D%7D%5Cimplies%20%5Ccfrac%7B6%5Ccdot%203%2B2%7D%7B3%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B20%7D%7B3%7D%7D%20~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B4%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B4%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B9%7D%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B20%7D%7B3%7D-%5Ccfrac%7B9%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Busing%20~~%5Cstackrel%7BLCD%7D%7B6%7D%7D%7B%5Ccfrac%7B%282%5Ccdot%2020%29-%283%5Ccdot%209%29%7D%7B6%7D%7D%5Cimplies%20%5Ccfrac%7B40-27%7D%7B6%7D%5Cimplies%20%5Ccfrac%7B13%7D%7B6%7D%5Cimplies%5Cblacktriangleright%202%5Cfrac%7B1%7D%7B6%7D%20%5Cblacktriangleleft)
Answer:
percentile rank of x =
number of values before x 100
--------------------------------------------------- x ----------
number of total values on the dot plot 1
Step-by-step explanation:
you divide the number of values before x over the number of total values on the dot plot, and divide the quotient by 100 to get your percentile.