Using the discrete probability outputs given in the attached table ; the probability values of having exactly 6 ; and having 6 or more girls are :
<u>The </u><u>probability</u><u> of having </u><u>exactly 6 girls</u><u> can be defined as</u> :
- P(X = 6) = 0.111 (from the discrete probability table)
2.)
<u>The </u><u>probability</u><u> of having </u><u>6 or more</u><u> girls can be defined as</u> :
- P(X ≥ 6) = P(X = 6) + P(X = 7) + P(X = 8)
- From the table attached :
- P(X ≥ 6) = 0.111 + 0.014 + 0.003 = 0.1
Therefore, the probability of having exactly 6 girls is 0.111 while the probability of having 6 or more girls is 0.1
Learn more : brainly.com/question/18153040
Answer:
6×6×6×6×6×6×6=279936
6×6×6×6×6=7776
279936÷7776= 36
36 is the answer but u could express it as: (6²)....Six squared
Step-by-step explanation:
Answer:
Distributive Property
Step-by-step explanation:

To prove a similarity of a triangle, we use angles or sides.
In this case we use angles to prove
∠ACB = ∠AED (Corresponding ∠s)
∠AED = ∠FDE (Alternate ∠s)
∠ABC = ∠ADE (Corresponding ∠s)
∠ADE = ∠FED (Alternate ∠s)
∠BAC = ∠EFD (sum of ∠s in a triangle)
Now we know the similarity in the triangles.
But it is necessary to write the similar triangle according to how the question ask.
The question asks " ∆ABC is similar to ∆____. " So we find ∠ABC in the prove.
∠ABC corressponds to ∠FED as stated above.
∴ ∆ABC is similar to ∆FED
Similarly, if the question asks " ∆ACB is similar to ∆____. "
We answer as ∆ACB is similar to ∆FDE.
Answer is ∆ABC is similar to ∆FED.
Point slope form is y-(-4) = 1/2(x-(-2)
y+4 =1/2 (x+2)
now the standard form 2y+8=x+2
so -x+2y=-6 is the equation for line p in standard form