Answer:
The answer simplify is 16384
Step-by-step explanation:
476.00×5%=23.80 tax=476+23.80=499.80
499.80×15%=74.97
499.80+74.97=574.77
Answer:
m=3/4
Step-by-step explanation:
See the attached above.
Hope it helps :)
well, we know that θ is in the III Quadrant, where the sine is negative and the cosine is negative as well, or if you wish, where "x" as well as "y" are both negative, now, the hypotenuse or radius of the circle is just a distance amount, so is never negative, so in the equation of cos(θ) = - (2/5), the negative must be the adjacent side, thus
![cos(\theta)=\cfrac{\stackrel{adjacent}{-2}}{\underset{hypotenuse}{5}}\qquad \textit{let's find the \underline{opposite side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \sqrt{c^2-a^2}=b \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{5^2 - (-2)^2}=b\implies \pm\sqrt{25-4}\implies \pm\sqrt{21}=b\implies \stackrel{III~Quadrant}{-\sqrt{21}=b}](https://tex.z-dn.net/?f=cos%28%5Ctheta%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B-2%7D%7D%7B%5Cunderset%7Bhypotenuse%7D%7B5%7D%7D%5Cqquad%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Bopposite%20side%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20%5Csqrt%7Bc%5E2-a%5E2%7D%3Db%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20%5Cpm%5Csqrt%7B5%5E2%20-%20%28-2%29%5E2%7D%3Db%5Cimplies%20%5Cpm%5Csqrt%7B25-4%7D%5Cimplies%20%5Cpm%5Csqrt%7B21%7D%3Db%5Cimplies%20%5Cstackrel%7BIII~Quadrant%7D%7B-%5Csqrt%7B21%7D%3Db%7D)
![\dotfill\\\\ csc(\theta)\implies \cfrac{\stackrel{hypotenuse}{5}}{\underset{opposite}{-\sqrt{21}}}\implies \stackrel{\textit{rationalizing the denominator}}{-\cfrac{5}{\sqrt{21}}\cdot \cfrac{\sqrt{21}}{\sqrt{21}}\implies -\cfrac{5\sqrt{21}}{21}} \\\\\\ tan(\theta)=\cfrac{\stackrel{opposite}{-\sqrt{21}}}{\underset{adjacent}{-2}}\implies tan(\theta)=\cfrac{\sqrt{21}}{2}](https://tex.z-dn.net/?f=%5Cdotfill%5C%5C%5C%5C%20csc%28%5Ctheta%29%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Bhypotenuse%7D%7B5%7D%7D%7B%5Cunderset%7Bopposite%7D%7B-%5Csqrt%7B21%7D%7D%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Brationalizing%20the%20denominator%7D%7D%7B-%5Ccfrac%7B5%7D%7B%5Csqrt%7B21%7D%7D%5Ccdot%20%5Ccfrac%7B%5Csqrt%7B21%7D%7D%7B%5Csqrt%7B21%7D%7D%5Cimplies%20-%5Ccfrac%7B5%5Csqrt%7B21%7D%7D%7B21%7D%7D%20%5C%5C%5C%5C%5C%5C%20tan%28%5Ctheta%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B-%5Csqrt%7B21%7D%7D%7D%7B%5Cunderset%7Badjacent%7D%7B-2%7D%7D%5Cimplies%20tan%28%5Ctheta%29%3D%5Ccfrac%7B%5Csqrt%7B21%7D%7D%7B2%7D)