1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MakcuM [25]
3 years ago
11

How to write a one step equation

Mathematics
1 answer:
bagirrra123 [75]3 years ago
6 0

x - 6 = 12 is a simple one step equation

You solve it by adding 6 to each side:

x - 6 = 12

+ 6 +6

x = 18

You might be interested in
The value of 2√4-3√27+√16+√225 is​
erastova [34]

Answer:

hope this help you

sorry if it is mistake

5 0
3 years ago
Not drawn
Oksi-84 [34.3K]

so first u want to get a ruler to measure each sides, there gonna seem big at first so divide what you get on the ruler by 2 so its smaller, then do it for all sides.

5 0
3 years ago
Which decimal is equal to this fraction​
kenny6666 [7]

Answer:

you need a better picture

7 0
3 years ago
Read 2 more answers
Corrine has 9.6 pounds of trail mix two divided to throw backs how many pounds of trail mix will go in each bad?
maw [93]
9.6 divided by 2 = 4.8
So there is 4.8 pounds of trailmix in each bag
4 0
4 years ago
Let D be the smaller cap cut from a solid ball of radius 8 units by a plane 4 units from the center of the sphere. Express the v
natima [27]

Answer:

Step-by-step explanation:

The equation of the sphere, centered a the origin is given by x^2+y^2+z^2 = 64. Then, when z=4, we get

x^2+y^2= 64-16 = 48.

This equation corresponds to a circle of radius 4\sqrt[]{3} in the x-y plane

c) We will use the previous analysis to define the limits in cartesian and polar coordinates. At first, we now that x varies from -4\sqrt[]{3} up to 4\sqrt[]{3}. This is by taking y =0 and seeing the furthest points of x that lay on the circle. Then, we know that y varies from -\sqrt[]{48-x^2} and \sqrt[]{48-x^2}, this is again because y must lie in the interior of the circle we found. Finally, we know that z goes from 4 up to the sphere, that is , z goes from 4 up to \sqrt[]{64-x^2-y^2}

Then, the triple integral that gives us the volume of D in cartesian coordinates is

\int_{-4\sqrt[]{3}}^{4\sqrt[]{3}}\int_{-\sqrt[]{48-x^2}}^{\sqrt[]{48-x^2}} \int_{4}^{\sqrt[]{64-x^2-y^2}} dz dy dx.

b) Recall that the cylindrical  coordinates are given by x=r\cos \theta, y = r\sin \theta,z = z, where r corresponds to the distance of the projection onto the x-y plane to the origin. REcall that x^2+y^2 = r^2. WE will find the new limits for each of the new coordinates. NOte that, we got a previous restriction of a circle, so, since \theta[\tex] is the angle between the projection to the x-y plane and the x axis, in order for us to cover the whole circle, we need that [tex]\theta goes from 0 to 2\pi. Also, note that r goes from the origin up to the border of the circle, where r has a value of 4\sqrt[]{3}. Finally, note that Z goes from the plane z=4 up to the sphere itself, where the restriction is \sqrt[]{64-r^2}. So, the following is the integral that gives the wanted volume

\int_{0}^{2\pi}\int_{0}^{4\sqrt[]{3}} \int_{4}^{\sqrt[]{64-r^2}} rdz dr d\theta. Recall that the r factor appears because it is the jacobian associated to the change of variable from cartesian coordinates to polar coordinates. This guarantees us that the integral has the same value. (The explanation on how to compute the jacobian is beyond the scope of this answer).

a) For the spherical coordinates, recall that z = \rho \cos \phi, y = \rho \sin \phi \sin \theta,  x = \rho \sin \phi \cos \theta. where \phi is the angle of the vector with the z axis, which varies from 0 up to pi. Note that when z=4, that angle is constant over the boundary of the circle we found previously. On that circle. Let us calculate the angle by taking a point on the circle and using the formula of the angle between two vectors. If z=4 and x=0, then y=4\sqrt[]{3} if we take the positive square root of 48. So, let us calculate the angle between the vectora=(0,4\sqrt[]{3},4) and the vector b =(0,0,1) which corresponds to the unit vector over the z axis. Let us use the following formula

\cos \phi = \frac{a\cdot b}{||a||||b||} = \frac{(0,4\sqrt[]{3},4)\cdot (0,0,1)}{8}= \frac{1}{2}

Therefore, over the circle, \phi = \frac{\pi}{3}. Note that rho varies from the plane z=4, up to the sphere, where rho is 8. Since z = \rho \cos \phi, then over the plane we have that \rho = \frac{4}{\cos \phi} Then, the following is the desired integral

\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{3}}\int_{\frac{4}{\cos \phi}}^{8}\rho^2 \sin \phi d\rho d\phi d\theta where the new factor is the jacobian for the spherical coordinates.

d ) Let us use the integral in cylindrical coordinates

\int_{0}^{2\pi}\int_{0}^{4\sqrt[]{3}} \int_{4}^{\sqrt[]{64-r^2}} rdz dr d\theta=\int_{0}^{2\pi}\int_{0}^{4\sqrt[]{3}} r (\sqrt[]{64-r^2}-4) dr d\theta=\int_{0}^{2\pi} d \theta \cdot \int_{0}^{4\sqrt[]{3}}r (\sqrt[]{64-r^2}-4)dr= 2\pi \cdot (-2\left.r^{2}\right|_0^{4\sqrt[]{3}})\int_{0}^{4\sqrt[]{3}}r \sqrt[]{64-r^2} dr

Note that we can split the integral since the inner part does not depend on theta on any way. If we use the substitution u = 64-r^2 then \frac{-du}{2} = r dr, then

=-2\pi \cdot \left.(\frac{1}{3}(64-r^2)^{\frac{3}{2}}+2r^{2})\right|_0^{4\sqrt[]{3}}=\frac{320\pi}{3}

3 0
3 years ago
Other questions:
  • Give the angle measure represented by 4.5 rotations counterclockwise.
    15·2 answers
  • Help pls 40 points with review 3
    14·1 answer
  • Estimate the unit rate if 12 pairs of socks sell for 5.79
    9·1 answer
  • One bag of potato chips costs $3. Five bags of potato chips costs $10. Which has the lower unit cost?
    12·2 answers
  • 1.) There are 8 people in a room.
    12·2 answers
  • Given that a = ( − 6 7 ) and b = ( − 1 − 3 ) . If a − b = ( x y ) , work out the values of x and y .
    9·1 answer
  • Kyle swam 450 yards in 5 minutes. What is the average number of yards he swam per minute?
    12·1 answer
  • Kyle bought four boxes of cereal for $8.60. How much would 10 boxes of cereal cost
    6·2 answers
  • Which expression is half as large as the sum of 464646 and 42?42?42, question mark
    13·2 answers
  • Find the distance between each pair of points (round answer to the nearest tenth if necessary)
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!