For each <em>x</em> in the interval 0 ≤ <em>x</em> ≤ 5, the shell at that point has
• radius = 5 - <em>x</em>, which is the distance from <em>x</em> to <em>x</em> = 5
• height = <em>x</em> ² + 2
• thickness = d<em>x</em>
and hence contributes a volume of 2<em>π</em> (5 - <em>x</em>) (<em>x</em> ² + 2) d<em>x</em>.
Taking infinitely many of these shells and summing their volumes (i.e. integrating) gives the volume of the region:

We presume your cost function is
c(p) = 124p/((10 +p)(100 -p))
This can be rewritten as
c(p) = (124/11)*(10/(100 -p) -1/(10 +p))
The average value of this function over the interval [50, 55] is given by the integral

This evaluates to
(-124/55)*(ln(65/60)+10ln(45/50)) ≈ 2.19494
The average cost of removal of 50-55% of pollutants is about
$2.19 hundred thousand = $219,000
55.76-50.38=4.38 inches of rainfall
Your welcome =)
difference= subtraction
Answer:

Step-by-step explanation:

X=3
Divide both sides of the equation by 2
X^3 =27
Write the number in exponential form with an exponent of 3
X^3=3^3
Since the exponents are the same, set the bases equal
X=3