Answer:2 hours 15 mins = 2 1/4 hours
2 1/4 hours = 25 miles
1 hour = 25 ÷ 2 1/4 = 25 ÷ 9/4 = 25 x 4/9 = 11.1 miles
Answer: 11.1 mph
Step-by-step explanation:
Answer:
try A!
Step-by-step explanation:
Answer:
A function f(x) is said to be periodic, if there exists a positive real number T such that f(x+T) = f(x).
You can also just say: A periodic function is one that repeats itself in regular intervals.
Step-by-step explanation:
The smallest value of T is called the period of the function.
Note: If the value of T is independent of x then f(x) is periodic, and if T is dependent, then f(x) is non-periodic.
For example, here's the graph of sin x. [REFER TO PICTURE BELOW]
Sin x is a periodic function with period 2π because sin(x+2π)=sinx
Other examples of periodic functions are all trigonometric ratios, fractional x (Denoted by {x} which has period 1) and others.
In order to determine the period of the determined graph however, just know that the period of the sine curve is the length of one cycle of the curve. The natural period of the sine curve is 2π. So, a coefficient of b=1 is equivalent to a period of 2π. To get the period of the sine curve for any coefficient b, just divide 2π by the coefficient b to get the new period of the curve.
Hopefully this helped a bit.
The original price was $22.5.
18 divided by 0.8 is 22.5.
If you double check 22.5 times 0.8, you will get 18, your sales price.
Answer:
Claim 2
Step-by-step explanation:
The Inscribed Angle Theorem* tells you ...
... ∠RPQ = 1/2·∠ROQ
The multiplication property of equality tells you that multiplying both sides of this equation by 2 does not change the equality relationship.
... 2·∠RPQ = ∠ROQ
The symmetric property of equality says you can rearrange this to ...
... ∠ROQ = 2·∠RPQ . . . . the measure of ∠ROQ is twice the measure of ∠RPQ
_____
* You can prove the Inscribed Angle Theorem by drawing diameter POX and considering the relationship of angles XOQ and OPQ. The same consideration should be applied to angles XOR and OPR. In each case, you find the former is twice the latter, so the sum of angles XOR and XOQ will be twice the sum of angles OPR and OPQ. That is, angle ROQ is twice angle RPQ.
You can get to the required relationship by considering the sum of angles in a triangle and the sum of linear angles. As a shortcut, you can use the fact that an external angle is the sum of opposite internal angles of a triangle. Of course, triangles OPQ and OPR are both isosceles.