Answer:
For a function y = f(x), the range is the set of all the possible values of y.
In the question you wrote:
y = secx - 2
This can be interpreted as:
y = sec(x - 2)
or
y = sec(x) - 2
So let's see each case (these are kinda the same)
If the function is:
y = sec(x - 2)
Firs remember that:
sec(x) = 1/cos(x)
then we can rewrite:
y = 1/cos(x - 2)
notice that the function cos(x) has the range -1 ≤ y ≤ 1
Then for the two extremes we have:
y = 1/1 = 1
y = 1/-1 = -1
Notice that for:
y = 1/cos(x - 2)
y can never be in the range -1 < x < 1
As the denominator cant be larger, in absolute value, than 1.
Then we can conclude that the range is all reals except the interval:
-1 < y < 1
If instead the function was:
y = sec(x) - 2
y = 1/cos(x) - 2
Then with the same reasoning, the range will be the set of all real values except:
-1 - 2 < y < 1 - 2
-3 < y < -1
Given that t<span>here
are 20 light bulbs in 5 packages.
The table to find the rate
that gives you the number of light bulbs in 3 packages is given as follows:
![\begin{tabular} {|c|c|c|c|c|c|} Light bulbs&4&8&12&16&20\\[1ex] Packages&1&2&3&4&5 \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7Cc%7Cc%7Cc%7Cc%7C%7D%0ALight%20bulbs%264%268%2612%2616%2620%5C%5C%5B1ex%5D%0APackages%261%262%263%264%265%0A%5Cend%7Btabular%7D)
Three different ways in which the rate can be written are:
12 light bulbs to 3 packages
12 light bulbs : 3 packages
12 light bulbs / 3 packages
</span>
Answer: a. 0.6759 b. 0.3752 c. 0.1480
Step-by-step explanation:
Given : The long-distance calls made by the employees of a company are normally distributed with a mean of 6.3 minutes and a standard deviation of 2.2 minutes
i.e.
minutes
minutes
Let x be the long-distance call length.
a. The probability that a call lasts between 5 and 10 minutes will be :-

b. The probability that a call lasts more than 7 minutes. :
![P(X>7)=P(\dfrac{X-\mu}{\sigma}>\dfrac{7-6.3}{2.2})\\\\=P(Z>0.318)\ \ \ \ [z=\dfrac{X-\mu}{\sigma}]\\\\=1-P(Z](https://tex.z-dn.net/?f=P%28X%3E7%29%3DP%28%5Cdfrac%7BX-%5Cmu%7D%7B%5Csigma%7D%3E%5Cdfrac%7B7-6.3%7D%7B2.2%7D%29%5C%5C%5C%5C%3DP%28Z%3E0.318%29%5C%20%5C%20%5C%20%5C%20%5Bz%3D%5Cdfrac%7BX-%5Cmu%7D%7B%5Csigma%7D%5D%5C%5C%5C%5C%3D1-P%28Z%3C0.318%29%5C%5C%5C%5C%3D1-0.6248%5C%20%5C%20%5C%20%5C%20%5B%5Ctext%7Bby%20z-table%7D%5D%5C%5C%5C%5C%3D0.3752)
c. The probability that a call lasts more than 4 minutes. :

First term, a
1
=4
Second term, a
2
=8
Common difference, d=a
2
=a
1
d=8−4=4
∴ The common difference is 4
6 is in the ones place
.5 is in the tenths place
and the 4 in 6.54 is in the hundredths place