We assume the composite figure is a cone of radius 10 inches and slant height 15 inches set atop a hemisphere of radius 10 inches.
The formula for the volume of a cone makes use of the height of the apex above the base, so we need to use the Pythagorean theorem to find that.
h = √((15 in)² - (10 in)²) = √115 in
The volume of the conical part of the figure is then
V = (1/3)Bh = (1/3)(π×(10 in)²×(√115 in) = (100π√115)/3 in³ ≈ 1122.994 in³
The volume of the hemispherical part of the figure is given by
V = (2/3)π×r³ = (2/3)π×(10 in)³ = 2000π/3 in³ ≈ 2094.395 in³
Then the total volume of the figure is
V = (volume of conical part) + (volume of hemispherical part)
V = (100π√115)/3 in³ + 2000π/3 in³
V = (100π/3)(20 + √115) in³
V ≈ 3217.39 in³
Answer:
Here is a graph of that equation.
Let me know if you need more help! :)
H1 (t) = 196 - 16 t-squared. / / / H2 (t) = 271-16t-squared. / / / In each function, 't' is the number of seconds after that ball is dropped. / / / Each function is only true until the first time that H=0, that is, until the first bounce. Each function becomes very complicated after that, and we would need more information in order to write it.
Answer:
The answer is A
Step-by-step explanation:
Supplementary angles are angles which add up to 180°
∠1 and ∠3 add up to 180°, so they are supplementary.
Answer:
Thank you!!!
Step-by-step explanation: