R = { (x,y): 3x-y=0 }
The condition is 3x=y so that's not going to be any of these things.
R is reflexive if (x,x)∈R for all x. Let's check.
3x - y = 3x - x = 2x ≠ 0 necessarily. NOT REFLEXIVE
R is symmetric if (x,y)∈R → (y,x)∈R. Let's check.
(x,y)∈R so
3x-y = 0
y = 3x
Is (y,x)∈R. That would be true if 3y-x=0
3y - x = 3(3x) - x = 8x ≠ 0 necessarily NOT SYMMETRIC
R is transitive if (x,y)∈R and (y,z)∈R → (x,z)∈R. Let's check.
3x-y = 0 so y=3x
3y-z = 0 so z=3y = 9x
3x - z = 3x - 9x = -6x ≠ 0 necessarily NOT TRANSITIVE
I believe it is use sugar and and release carbon. We breath in oxygen so you know it can’t be anything where we release oxygen. And I don’t know how we could release nitrogen so I would go with the second one
Step-by-step explanation:
l x 3 = c
k + 5 = l
(c + l + k) x 2 = 25
c = 33
l = 11
k = 6
Answer:
<em>99.93%</em>
Step-by-step explanation:
<u>Probability of Independent Events</u>
Given the probability of success of each detector is 0.84 independently of the others, their combined success/failure probability can be computed with the product rule.
We can calculate the required probability by using the binomial distribution, but it's easier to calculate the probability of the negated event an subtract from 1.
We want to know the probability that a least one of the 4 systems detects the occurrence of theft. That probability is the sum of the probabilities that one of them, two of them, three of them or all of them succeed. The negated event is that NONE of them actually detects the theft. Being p the individual probability of success, p=0.84. Being q the probability of failure, q=0.16.
The probability that none of the systems detect the theft is

Thus, the probability that at least one of the systems detect the theft is

That means a 99.93%
Answer:
A. 30
Step-by-step explanation:
Because it showed up the most