Answer:
ΔH° = -186.2 kJ
Explanation:
Hello,
This case in which the Hess method is applied to compute the required chemical reaction. Thus, we should arrange the given first two reactions as:
(1) it is changed as:
SnCl2(s) --> Sn(s) + Cl2(g)...... ΔH° = 325.1 kJ
That is why the enthalpy of reaction sign is inverted.
(2) remains the same:
Sn(s) + 2Cl2(g) --> SnCl4(l)......ΔH° = -511.3 kJ
Therefore, by adding them, we obtain the requested chemical reaction:
(3) SnCl2(s) + Cl2(g) --> SnCl4(l)
For which the enthalpy change is:
ΔH° = 325.1 kJ - 511.3 kJ
ΔH° = -186.2 kJ
Best regards.
Answer:
a) overall charge will be neutral.
Explanation:
The Ph value for Pro will be neutral and neutral charge on the Ser. Molecules of atoms generally have neutral electrical charge. If the overall charge of a peptide is negative then it is considered as negative. Pro and Ser amino acids have neutral Ph values.
Answer:
Dissociated state is the predominant one
Explanation:
When a molecule with pKa of 4.52 is in an aqueous solution at pH = 4.0, follows the H-H equation, thus:
pH = pKa + log₁₀ [A⁻] / [HA]
<em>Where [A⁻] is the dissociated state and [HA] represents the protonated state</em>
Replacing:
4.0 = 5.2 + log₁₀ [A⁻] / [HA]
-1.2 = log₁₀ [A⁻] / [HA]
0.063 = [A⁻] / [HA]
[HA] = 16 [A⁻]
That means you have 16 times more [HA] than [A⁻] and the <em>dissociated state is the predominant one</em>
Answer:
Explanation:
The first one. They are both alcohol groups