The inequality is all real numbers.
<h3>What is inequality?</h3>
A statement of an order relationship—greater than, greater than or equal to, less than, or less than or equal to—between two numbers or algebraic expressions.
Given:
|3x|≥0
3x = 0
Divide both sides of the equation by the coefficient of variable
x= 0/3
x=0 = RHS
Learn more about inequality here:
brainly.com/question/20383699
#SPJ1
We have been given a graph of function g(x) which is a transformation of the function 
Now we have to find the equation of g(x)
Usually transformation involves shifting or stretching so we can use the graph to identify the transformation.
First you should check the graph of 
You will notice that it is always above x-axis (equation is x=0). Because x-axis acts as horizontal asymptote.
Now the given graph has asymptote at x=-2
which is just 2 unit down from the original asymptote x=0
so that means we need shift f(x), 2 unit down hence we get:

but that will disturb the y-intercept (0,1)
if we multiply
by 3 again then the y-intercept will remain (0,1)
Hence final equation for g(x) will be:

I'll do Problem 8 to get you started
a = 4 and c = 7 are the two given sides
Use these values in the pythagorean theorem to find side b

With respect to reference angle A, we have:
- opposite side = a = 4
- adjacent side = b =

- hypotenuse = c = 7
Now let's compute the 6 trig ratios for the angle A.
We'll start with the sine ratio which is opposite over hypotenuse.

Then cosine which is adjacent over hypotenuse

Tangent is the ratio of opposite over adjacent

Rationalizing the denominator may be optional, so I would ask your teacher for clarification.
So far we've taken care of 3 trig functions. The remaining 3 are reciprocals of the ones mentioned so far.
- cosecant, abbreviated as csc, is the reciprocal of sine
- secant, abbreviated as sec, is the reciprocal of cosine
- cotangent, abbreviated as cot, is the reciprocal of tangent
So we'll flip the fraction of each like so:

------------------------------------------------------
Summary:
The missing side is 
The 6 trig functions have these results

Rationalizing the denominator may be optional, but I would ask your teacher to be sure.