Like repels like when we're working with electrical charges. So positive repels positive and negative repels negative. When you have questions that ask which of the following or which of these or something like that, it's best to give us those options so we can give you the best help possible.
Answer: Light goes into the eye via the cornea, it then pass through the pupil, the lens, the vitreous humor and finally forms an image on the retina.
Explanation:
Light goes into the eye via the cornea. The cornea is a clear, dome-shaped surface that covers the front of the eye.
From the cornea, the light passes through the pupil. The pupil regulates the amount of light passing through.
From the pupil, , light hits the lens. The lens is the clear structure inside the eye. It focuses light rays onto the retina.
Subsequently, light passes through the vitreous humor. A clear, jelly-like substance that fills the center of the eye. It helps to keep the eye round in shape.
Finally, the light reaches the retina where the image is formed the image is usually inverted. The retina is a light-sensitive nerve layer that is situated at the back of the eye.
The main function of the optic nerve is to carry the signals to the visual cortex of the brain. The visual cortex turns the signals into images.
The answers would be:
Layer D
Layer C
Layer B
Layer A
Layer E
Fault F
If you'd like to know why, here's more about the question:
The law of superpo sition states that the lower the layer, the older the rock is.
Looking at the layers alone, we can say that D is the oldest, and C would be next, so on and so forth.
The law of cross - cutt ing relationships, on the other hand, states that a geologic event, like a fault, is younger than the layer that it goes through.
So if we look at the figure given, the fault goes through all the layers, so we can say that it is younger than all the layers.
<em></em>
He was a biologist who had studied about the heridity that transfers through chromosomes ( genes ) . He varified the chromosomal theory.. Morgan worked with tiny fruit flies ( Drosophilia ) . Many types of heredity variations he had observed.. And later , he gave a clear picture about the gene transfer.