Answer:
sas fact congruency
Step-by-step explanation:
angle and same side are given
both triangle have same side
Step-by-step explanation:
The solution to this problem is very much similar to your previous ones, already answered by Sqdancefan.
Given:
mean, mu = 3550 lbs (hope I read the first five correctly, and it's not a six)
standard deviation, sigma = 870 lbs
weights are normally distributed, and assume large samples.
Probability to be estimated between W1=2800 and W2=4500 lbs.
Solution:
We calculate Z-scores for each of the limits in order to estimate probabilities from tables.
For W1 (lower limit),
Z1=(W1-mu)/sigma = (2800 - 3550)/870 = -.862069
From tables, P(Z<Z1) = 0.194325
For W2 (upper limit):
Z2=(W2-mu)/sigma = (4500-3550)/879 = 1.091954
From tables, P(Z<Z2) = 0.862573
Therefore probability that weight is between W1 and W2 is
P( W1 < W < W2 )
= P(Z1 < Z < Z2)
= P(Z<Z2) - P(Z<Z1)
= 0.862573 - 0.194325
= 0.668248
= 0.67 (to the hundredth)
Answer:
k = -1
Step-by-step explanation:
-3k + 6 = 10 + k
combine similar terms:
-3k - k = 10 - 6
simplify:
-4k = 4
simplify:
k = 4 / -4
k = -1
Y
=
−
2
x
+
5
y
=
-
2
x
+
5
Use the slope-intercept form to find the slope and y-intercept.
Tap for more steps...
Slope:
−
2
-
2
y-intercept:
(
0
,
5
)
(
0
,
5
)
Any line can be graphed using two points. Select two
x
x
values, and plug them into the equation to find the corresponding
y
y
values.
Tap for more steps...
x
y
0
5
5
2
0
Answer:
See explanation below.
Step-by-step explanation:
Having students in the classroom who are at different levels of knowledge, interest, and ability can be managed by differentiated instruction. This method is a way of thinking that provides a framework where the instructor can set students with learning tasks that are at levels appropriate with the abilities and interests of each student. Each student can have a different type of class and different type of instruction with the differentiated instruction way of thinking.
A gifted and talented student might be assigned a higher math course, perhaps based on a math assessment for advanced placement. Then students that need to stay on the typical high school path of Algebra I, Geometry, Algebra II, and Trigonometry can do that.
Gifted students might take an alternate path with honors classes or trajectories involving Pre-Calculus or advanced placement Calculus, for example. In some instances, universities have allowed High School students to obtain college credit for some courses taken during High School.
Hope this helps! Have an Awesome Day!! :-)