1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marusya05 [52]
3 years ago
12

Hi, how would I solve for Angle A without factoring? I don't know how to factor and always had trouble with it, but if someone c

an explain in-depth how to factor in this equation to find the measurement of angle A, that would be great.

Mathematics
2 answers:
aleksley [76]3 years ago
8 0

If this figure was a parallelogram, then the opposite angles would be congruent. This would make angles B and D the same measure

angle B = angle D

x^2+20 = 7x+50

x^2+20-7x-50 = 0 .... get everything to one side

x^2-7x-30 = 0

(x-10)(x+3) = 0 ... see note below

x-10 = 0 or x+3 = 0

x = 10 or x = -3

Note: In this step is where the factoring occurs. To factor, we need to find two numbers that multiply to -30 which is the last term, and also add to -7 which is the middle coefficient. This is a trial and error process. You should find that -10 and 3 both multiply to -30 and add to -7. I suggest making a table as shown below (attached image) to list out all the possible choices.

Perhaps a much more efficient route is to use the quadratic formula.

-----------------

We found two possible solutions for x. If x = 10, then 7x+50 is 7(10)+50 = 120 which is an obtuse angle. If x = -3, then 7x+50 = 7(-3)+50 = 29 which is acute.

Assuming the diagram is drawn to scale, this means angle D is obtuse and we'll go with x = 10 and 7x+50 = 120

Angles A and D add to 180 degrees. This is true for any pair of adjacent angles in a parallelogram.

A+D = 180

A+120 = 180

A = 180-120

<h3>A = 60</h3>

-----------------

<h3>Final Answer: Angle A = 60 degrees</h3>

This answer is based on the assumption that the diagram is drawn to scale and that this quadrilateral is a parallelogram.

Katen [24]3 years ago
5 0

Answer:

\angle A=60\textdegree

Step-by-step explanation:

So we have the following parallelogram and we wish to solve for ∠A.

To do so, we will need to solve for x first. Look carefully at the parallelogram...

Notice that ∠A and ∠D are consecutive angles. In other words:

\angle A+\angle D=180

Since we have an equation for ∠D, substitute:

\angle A+7x+50=180

Notice that ∠A and ∠B are <em>also</em> consecutive angles. So:

\angle A+\angle B=180

We know the equation for ∠B. Substitute:

\angle A+x^2+20=180

Since both equations equal 180, we can set them equal to each other:

\angle A+7x+50=x^2+20+\angle A

Let's subtract ∠A from both sides. This gives us:

7x+50=x^2+20

Now, we can solve for x. This is a quadratic, so let's move all the terms to one side. To start off, let's subtract 50 from both sides:

7x=x^2-30

Now, let's subtract 7x from both sides:

0=x^2-7x-30

Solve for x. We can factor.

Here's the trick to factoring. If we have the following:

0=ax^2+bx+c

The we will need to find two numbers, p and q, such that:

p+q=b\text{ and } pq=ac

In our equation, a is 1, b is -7, and c is -30.

So, we want two numbers that sum to -7 and multiply to (1)(-30)=-30.

We can use -10 and 3. -10+3 is -7 and -10(3) is -30. So, let's substitute our b term for -10x and 3x. In other words, we have:

0=x^2-7x-30

Substitute -7x for 3x-10x. This gives us:

0=x^2+3x-10x-30

This is equivalent to our old equation.

Now, we can factor. Factor out a x from the first two terms:

0=x(x+3)-10x-30

And factor out a -10 from the two last terms:

0=x(x+3)-10(x+3)

Since the expressions within the parentheses are the same, we can use grouping to acquire:

0=(x-10)(x+3)

Note that this is essentially the distribute property. If we distribute, we will get the same as above.

Zero Product Property:

x-10=0\text{ or }x+3=0

Solve for x:

x=10\text{ or } x=-3

So, we have two cases for x. Each case will yield a different answer for ∠A.

Case I: x=10

Use our original equation of:

\angle A+7x+50=180

Substitue 10 for x:

\angle A+7(10)+50=180

Multiply:

\angle A+70+50=180

Add:

\angle A+120=180

Subtract 120 from both sides:

\angle A=60\textdegree

So, in our first case, ∠A is 60°

Case II: x=-3

Again, same equation:

\angle A+7x+50=180

This time, substitute -3 for x. This yields:

\angle A+7(-3)+50=180

Multiply:

\angle A-21+50=180

Add:

\angle A+29=180

Subtract 29 from both sides:

\angle A=151\textdegree

So, in our second case, ∠A is 151°

However, 151° doesn't seem likely with how the figure is drawn.

Therefore, our final answer is 60°.

And we're done!

Edit: Fixed Incorrect Answer

You might be interested in
You will write a 5-paragraph essay explaining how you would solve the following equation:
sattari [20]

Answer:

x=0

Step-by-step explanation:

\frac{7}{3}(2x+3)+\frac{3}{4}(\frac{x}{5}-\frac{15}{2})=\frac{11}{8} <-- Given

\frac{14}{3}x+7+\frac{3}{20}x-\frac{45}{8}=\frac{11}{8} <-- Distributive Property

\frac{280}{60}x+7+\frac{9}{60}x-\frac{45}{8}=\frac{11}{8} <-- Find LCD of x-terms

\frac{289}{60}x+7-\frac{45}{8}=\frac{11}{8} <-- Combine Like Terms

\frac{289}{60}x+7=\frac{56}{8} <-- Add 45/8 to both sides

\frac{289}{60}x+7}=7 <-- Simplify Right Side

\frac{289}{60}x=0 <-- Subtract 7 on both sides

x=0 <-- Divide both sides by 289/60

3 0
2 years ago
PLS HELPP! ITS TIMED
Maru [420]

Answer:

Neg will be on 2nd one

Pos will be on 3rd one

Unde will be on 4th one

Zero will be one 1st one

7 0
3 years ago
The bees buzzed by the beatiuful blue bag, what is this?
11111nata11111 [884]
Alliteration

how I remember is that the 2 L’s are together in the word, and the same letter is repeated in the sentence.
if that makes sense,

hope i’m not too late!!
8 0
3 years ago
Read 2 more answers
Trigonometry, can anybody help??
WINSTONCH [101]

Answer:

angle B: 39

AC: 7.288

AB: 11.58

(note: you cut off the part about rounding so make sure that it's rounded correctly before you put in your answer)

Step-by-step explanation:

To solve this we will use SOH, CAH, TOA

we have the angle and the one opposite to it which means we can use either SOH or TOA

let's use TOA

tan(51)=(9/x)

x= 7.288

We can now use pahtagaryous theroem to solve for the hyptonouse

we have

9²+7.288²=C²

C=11.58

Finally, to find angle B we will recall that the angles of a triangle must add to 180.

51+90+a=180

a=39

5 0
3 years ago
How do I solve this I'm having a problem.
Llana [10]
How do you solve what
4 0
4 years ago
Read 2 more answers
Other questions:
  • Which of the following is the linear parent function?
    5·2 answers
  • Noah and Audrey are simplifying the expression 5x-4+x+2, whos is wrong and why;
    8·1 answer
  • Write an algebraic expression for n" divide by 6
    9·1 answer
  • Can anyone do this need help:)
    6·1 answer
  • Whats the solutions to
    5·2 answers
  • Use a sum identity to find the exact value of cos 285.
    12·1 answer
  • Hellppppppppppppppppppppppp
    14·1 answer
  • Find the measure of angle w.'<br> 5 points<br> wo<br> 124°<br> О124<br> О 34<br> оооо<br> 56
    14·1 answer
  • Is currency truly a storehouse of value? Unfortunately money can, and usually does, lose its value over time.
    9·1 answer
  • I need my password to login
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!