1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nata [24]
3 years ago
14

Simplify: 4x3 – 3x2 + x + 3x3

Mathematics
1 answer:
Serhud [2]3 years ago
4 0
Are you asking to simplify all of those equations?

You might be interested in
Use the distributive property to fill in the blanks below.
elena-14-01-66 [18.8K]

Answer:

(5×7)-(5×6) = 5×(7-6)

5 0
3 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
Seed mixture X is 40 percent ryegrass and 60 percent bluegrass by weight; seed mixture Y is 25 percent ryegrass and 75.percent f
irinina [24]

Answer:

33%

Step-by-step explanation:

Assuming the weight of the mixture to be 100g**, then the weight of ryegrass in the mixture would be 30g.

Also, assume the weight mixture X used in the mixture is Xg, then the weight of mixture Y used in the mixture would be (100-X)g.

So we can now equate the parts of the ryegrass in the mixture as:

0.4X + 0.25(100-X) = 30

<=> 0.4X + 25 - 0.25X = 30

<=> 0.15X = 5

<=> X = 5/0.15 = 500/15 = 100/3

So the weight of mixture X as a percentage of the weight of the mixture

= (weight of X/weight of mixture) * 100%

= (100/3)/100 * 100%

= 33%

3 0
3 years ago
HELP HELP HELP
Alik [6]
The answer would be 7
7 0
3 years ago
A book club has 200 members
nikklg [1K]
So these are decmials of the accutal total so

.32=32%
what makes this question easy is that there are 200 members so to convert the percents into accutall numbers so like .32=32%=64 people (since 200 is 2 times of 100)

A. fiction of 31-40 compared to 21-30
fiction 31-40=.38=38%=76 readers
fiction 21-30=.32=32%=64 readers
76-64=12
A is FALSE

B. so we want to know how many people are 31-40 and prefer fiction
so .38=38% and 38% of 200=76
B is FALSE

C 43 members are 21-30
so we look at the total row for the 21-30 people and see that .43 or 43% or 86 people are in the 21-30 age group
C is FALSE

D. 140 members prefer fiction
look at the total column for fiction and see that .70 like fiction .70=70%=140 people
D is TRUE

so A,B,C are FALSE
D is TRUE
7 0
3 years ago
Other questions:
  • Combine the like terms to make a similar expression 2q+2+9
    12·1 answer
  • Is (2, 5) a solution to this system of equations?<br><br> x + 2y = 12<br> 2x + 2y = 14<br> yes or no
    15·1 answer
  • 1/2r+2(3/4r-1)=1/4r+6
    8·1 answer
  • Please Help! <br><br> what is a unit rate in math
    13·2 answers
  • For a circle with a radius of 6 feet, what is the measurement of the central angle (in degrees) that intercepts an arc with a le
    8·1 answer
  • A password can be any string of length 7, 8, or 9. Each character in the password can be any capital letter or special character
    14·1 answer
  • Fiad the sample variance and standard deviation.<br> 21, 10, 3, 7, 11
    9·1 answer
  • Please help with this question. Quick! 20 points!
    5·1 answer
  • tyler made 12 out of 30 free-throw shots on the basketball court. if he attempts 75 free- throws, how many could he expect to ma
    9·1 answer
  • What is the value of e?<br> 1190<br> c<br> a<br> O A. 22°<br> OB. 48°<br> 0 C. 61°<br> O D. 180°
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!