Answer:
--- (a)
---- (b)
Step-by-step explanation:
Given
Per ride (r) = $8
Per baseballs (s) = $6
Total = $100
Required
Represent using an equation
If 1 ride is $8.
r rides would be 8r
If 1 baseball is $6
s baseballs would be 6r.
So, total is:

Solving (b):
Value of s when r = 14

Substitute 14 for r


Solve for 6s


Solve for s


The answer is 91 toys sold, make
the number ab where a is the 10th digit and b is the first digit. The
value is 10a + b that can expressed as 10 (3) + 4 = 34
Let the price of each item: xy
10x + y
He accidentally reversed the
digits to: 10b + a toys sold at 10y + x rupees per toy. To get use the formula,
he sold 10a + b toys but thought he sold 10b + a toys. The number of toys that
he thought he left over was 72 items more than the actual amount of toys left
over. So he sold 72 more toys than he thought:
10a + b =10b + a +72
9a = 9b + 72
a = b + 8
The only numbers that could work
are a = 9 and b = 1 since a and b each have to be 1 digit numbers. He reversed
the digits and thought he sold 19 toys. So the actual number of toys sold was
10a + b = 10 (9) + 1 = 91 toys sold. By checking, he sold 91 – 19 = 72 toys
more than the amount that he though the sold. As a result, the number of toys
he thought he left over was 72 more than the actual amount left over as was
stated in the question.
<span />
Answer:
The height of the ball after 3 secs of dropping is 16 feet.
Step-by-step explanation:
Given:
height from which the ball is dropped = 160 foot
Time = t seconds
Function h(t)=160-16t^2.
To Find:
High will the ball be after 3 seconds = ?
Solution:
Here the time ‘t’ is already given to us as 3 secs.
We also have the relationship between the height and time given to us in the question.
So, to find the height at which the ball will be 3 secs after dropping we have to insert 3 secs in palce of ‘t’ as follows:


h(3)=160-144
h(3)=16
Therefore, the height of the ball after 3 secs of dropping is 16 feet.
Answer: 9
Step-by-step explanation: