Answer: There are 20 students and 4 students are not here today.
Step-by-step explanation:
If the number of students = 4
Let the number of students be 'x'.
Fraction of students absent = 
If the number of students = 5
Fraction of students absent = 
And Jen came back,
So, the fraction of student absent is also written as

According to question, it becomes,

Hence, there are 20 students in our school.
And number of students are not here today is 
So i dont get your question. do you need to find out what 3x10^-2 is?
Answer:
Step-by-step explanation:
Given the angle ∠AOB
It is stated that CO is the angle bisector of ∠AOB.
Given that ∠AOB = 30°
As we know that the angle bisector bisects the angle into two equal angles.
Thus, the angle bisector CO bisects the angle ∠AOB into two equal angles, which are:
as
∠AOB = 30°
Thus, the two formed angles i.e m∠AOC and m∠BOC by the angle bisector would be half of the angle bisector as the angle bisector bisects the angle ∠AOB into two equal angles.
Therefore,
Answer:
c) Is not a property (hence (d) is not either)
Step-by-step explanation:
Remember that the chi square distribution with k degrees of freedom has this formula

Where N₁ , N₂m ....
are independent random variables with standard normal distribution. Since it is a sum of squares, then the chi square distribution cant take negative values, thus (c) is not true as property. Therefore, (d) cant be true either.
Since the chi square is a sum of squares of a symmetrical random variable, it is skewed to the right (values with big absolute value, either positive or negative, will represent a big weight for the graph that is not compensated with values near 0). This shows that (a) is true
The more degrees of freedom the chi square has, the less skewed to the right it is, up to the point of being almost symmetrical for high values of k. In fact, the Central Limit Theorem states that a chi sqare with n degrees of freedom, with n big, will have a distribution approximate to a Normal distribution, therefore, it is not very skewed for high values of n. As a conclusion, the shape of the distribution changes when the degrees of freedom increase, because the distribution is more symmetrical the higher the degrees of freedom are. Thus, (b) is true.
Answer:
1 is to 2 is the answer. U.got that