Answer:
AB = 3.9CM ; A = 51° ; C = 39°
Step-by-step explanation:
Base BC = 4.8cm
AC = 6.2cm
Angle B = 90°
Using trigonometry, the length of AB can be obtained thus :
AB^2 = AC^2 - BC^2
AB^2 = 6.2^2 - 4.8^2
AB^2 = 38.44 - 23.04
AB^2 = 15.4
AB = sqrt(15.4)
AB = 3.92 cm
Angle A :
Using :
Sinα = opposite / hypotenus
Sinα = 4.8 / 6.2
Sinα = 0.7741935
α = sin^-1 (0.7741935)
α = 50.73
A = 51° (approximately)
Angle C ;
(A + B + C) = 180 (Sum of angles in a triangle)
51 + 90 + C = 180
141 + C = 180
C = 180 - 141
C = 39°
Answer:
(53.812 ; 58.188) ; 156
Step-by-step explanation:
Given that :
Sample size (n) = 51
Mean (m) = 56
Standard deviation (σ) = 9.5
α = 90%
Using the relation :
Confidence interval = mean ± Error
Error = Zcritical * (standard deviation / sqrt (n))
Zcritical at 90% = 1.645
Error = 1.645 * (9.5 / sqrt(51))
Error = 1.645 * 1.3302660
Error = 2.1882877
Hence,
Confidence interval :
Lower boundary = 56 - 2.1882877 = 53.8117123
Upper boundary = 56 + 2.1882877 = 58.1882877
Confidence interval = (53.812 ; 58.188)
2.)
Margin of Error (ME) = 1.25
α = 90%
Sample size = ((Zcritical * σ) / ME)^2
Zcritical at 90% = 1.645
Sample size = ((1.645 * 9.5) / 1.25)^2
Sample size = (15.6275 / 1.25)^2
Sample size = 12.502^2 = 156.3000
Sample size = 156
A number, a variable, or group of number and variables that are added, subtracted, multiplied, or divided
Answer:
-185
Step-by-step explanation: