1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovikov84 [41]
3 years ago
6

What is the x-value of the solution to the system of equations shown below?

Mathematics
1 answer:
Free_Kalibri [48]3 years ago
7 0
2(3x+5)=4x+24
6x+10=4x+24
6x-4x=24-10
2x=14
x=7
You might be interested in
Name a perfect square between 60 and 80.
Studentka2010 [4]

Answer:

8*8 = 64

Step-by-step explanation:

PERFECT SQUARE

4 0
3 years ago
Read 2 more answers
PLS HELP.<br> YOU WILL GET A GOOD DEED :)
qaws [65]

Answer:

a, 17.5

b, 16.2

do it with reciprocal

3 0
3 years ago
Luke’s that seven pieces of wood on top of one another if each piece was 4/8 of a foot tall how tall was his pile
Ludmilka [50]

Answer:

6 1/2 feet or 78 inches tall

Step-by-step explanation:

You have to multiply 4/8 by 7/1

First you multiply the nominators: 4 × 7 = 28

Then you multiply the denominators: 8 × 1 = 8

So the fraction would be 28/8 and it simplifies to 7/2

You can turn it into an improper fraction by seeing how many times 2 will go into seven evenly, which would be 6 times with 1 half left over

Therefore it would be 6 1/2 feet or 78 inches tall

8 0
3 years ago
Find the real numbers x and y if -3+ix^2y and x^2+y+4i are conjugate of each other. Pls solve with the steps
Firdavs [7]
ANSWER
x = ±1 and y = -4.
Either x = +1 or x = -1 will work

EXPLANATION
If -3 + ix²y and x² + y + 4i are complex conjugates, then one of them can be written in the form a + bi and the other in the form a - bi. In other words, between conjugates, the imaginary parts are same in absolute value but different in sign (b and -b). The real parts are the same

For -3 + ix²y
⇒ real part: -3
⇒ imaginary part: x²y

For x² + y + 4i
⇒ real part: x² + y (since x, y are real numbers)
⇒ imaginary part: 4

Therefore, for the two expressions to be conjugates, we must satisfy the two conditions. 

Condition 1: Imaginary parts are same in absolute value but different in sign. We can set the imaginary part of -3 + ix²y to be the negative imaginary part of x² + y + 4i so that the 

   x²y = -4 ... (I)

Condition 2: Real parts are the same

   x² + y = -3 ... (II)

We have a system of equations since both conditions must be satisfied

   x²y = -4 ... (I)
   x² + y = -3 ... (II)

We can rearrange equation (II) so that we have

   y = -3 - x² ... (II)

Substituting into equation (I)

   x²y = -4 ... (I)
   x²(-3 - x²) = -4
   -3x² - x⁴ = -4
   x⁴ + 3x² - 4 = 0
   (x² + 4)(x² - 1) = 0
   (x² + 4)(x-1)(x+1) = 0

Therefore, x = ±1.
Leave alone (x² + 4) as it gives no real solutions.

Solve for y:

   y = -3 - x² ... (II)
   y = -3 - (±1)²
   y = -3 - 1
   y = -4

So x = ±1 and y = -4. We can confirm this results in conjugates by substituting into the expressions:

   -3 + ix²y 
   = -3 + i(±1)²(-4)
   = -3 - 4i

   x² + y + 4i
   = (±1)² - 4 + 4i
   = 1 - 4 + 4i
   = -3 + 4i

They result in conjugates
4 0
3 years ago
Read 2 more answers
If the terminal side of angle θ passes through a point on the unit circle in the first quadrant where x=√2/2, what is the exact
Serhud [2]

The exact measure of the angle is 45°.

<h3>How to get the angle?</h3>

We know that the terminal side passes through a point of the form (√2/2, y).

Notice that the point is on the unit circle, so its module must be equal to 1, so we can write:

1 = \sqrt{( \frac{\sqrt{2} }{2} )^2 + y^2} \\\\1^2 = \frac{2}{4} + y^2\\1 - 1/2 = y^2\\\\1/\sqrt{2} = y

We know that y is positive because the point is on the first quadrant.

Now, we know that our point is:

(√2/2, 1/√2)

And we can rewrite:

√2/2 = 1/√2

So the point is:

( 1/√2,  1/√2)

Finally, remember that a point (x, y), the angle that represents it is given by:

θ = Atan(y/x).

Then in this case, we have:

θ = Atan(1/√2/1/√2) = Atan(1) = 45°

If you want to learn more about angles, you can read:

brainly.com/question/17972372

3 0
2 years ago
Other questions:
  • Find the unknown angle
    5·2 answers
  • You have climbed to the top of a tall tree. When you get to the top, you use your clinometer to discover that the angle between
    11·1 answer
  • Maribelle uses x yards of material to make a quilt. A customer requests 5 quilts that are 20% larger than the normal pattern. Wr
    15·1 answer
  • Find the zeros of the function; To the nearest Hundredth. PLEASE HELP
    5·1 answer
  • If p = q^r, q=r^p and r=p^q, prove that prq=1.​
    5·1 answer
  • The diagram shows a rectangular yard. Each small block is
    6·1 answer
  • !HELP! Find The Exponential Equations For The Following Graph Below
    6·2 answers
  • What is the value of x?<br> A. 3<br> B. 9<br> C. 15<br> D. 30
    9·1 answer
  • Find the value of f(-5).
    8·1 answer
  • In the drawing below, what choice shows the corresponding sides as equal ratios?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!