The correct answer is - B) ATP and NADPH.
The products of the light reactions of the process of photosynthesis are the ATP and NADPH. The small amount of ATP produced in this process and the energy carrier NADHP are crucial for the functioning of the organisms that use the process of photosynthesis, and the reason for that is that these two are used by the organisms to create glucose, or rather sugars, in the process called the Calvin Cycle. The glucose is what these organisms use as their food, a food they they manage to make themselves, thus making them producers. If the light is missing, then the process of photosynthesis can not be performed because the formation of ATP's will be stopped, as well as the formation of NADHP, so the organisms will not be able to produce their own food.
Parasites need a host. If a host tries to get rid of the parasite or kill it, then the parasite either has to leave the body or die.
Answer:
The preceding section reviewed the major metabolic reactions by which the cell obtains and stores energy in the form of ATP. This metabolic energy is then used to accomplish various tasks, including the synthesis of macromolecules and other cell constituents. Thus, energy derived from the breakdown of organic molecules (catabolism) is used to drive the synthesis of other required components of the cell. Most catabolic pathways involve the oxidation of organic molecules coupled to the generation of both energy (ATP) and reducing power (NADH). In contrast, biosynthetic (anabolic) pathways generally involve the use of both ATP and reducing power (usually in the form of NADPH) for the production of new organic compounds. One major biosynthetic pathway, the synthesis of carbohydrates from CO2 and H2O during the dark reactions of photosynthesis, was discussed in the preceding section. Additional pathways leading to the biosynthesis of major cellular constituents (carbohydrates, lipids, proteins, and nucleic acids) are reviewed in the sections that follow.
Go to:
Carbohydrates
In addition to being obtained directly from food or generated by photosynthesis, glucose can be synthesized from other organic molecules. In animal cells, glucose synthesis (gluconeogenesis) usually starts with lactate (produced by anaerobic glycolysis), amino acids (derived from the breakdown of proteins), or glycerol (produced by the breakdown of lipids). Plants (but not animals) are also able to synthesize glucose from fatty acids—a process that is particularly important during the germination of seeds, when energy stored as fats must be converted to carbohydrates to support growth of the plant. In both animal and plant cells, simple sugars are polymerized and stored as polysaccharides.
Gluconeogenesis involves the conversion of pyruvate to glucose—essentially the reverse of glycolysis. However, as discussed earlier, the glycolytic conversion of glucose to pyruvate is an energy-yielding pathway, generating two molecules each of ATP and NADH. Although some reactions of glycolysis are readily reversible, others will proceed only in the direction of glucose breakdown, because they are associated with a large decrease in free energy. These energetically favorable reactions of glycolysis are bypassed during gluconeogenesis by other reactions (catalyzed by different enzymes) that are coupled to the expenditure of ATP and NADH in order to drive them in the direction of glucose synthesis. Overall, the generation of glucose from two molecules of pyruvate requires four molecules of ATP, two of GTP, and two of NADH. This process is considerably more costly than the simple reversal of glycolysis (which would require two molecules of ATP and two of NADH), illustrating the additional energy required to drive the pathway in the direction of biosynthesis.
No caffein,there is a factor that must not be changed when conducting an experiment,known as controlled variable
Answer:
See the answer below
Explanation:
Recall that: <em>Water potential = pressure potential + solute potential</em>
Since the system is an open one;
<em>Water potential = solute potential = -iCRT</em>
i = number of particles the molecle will make in water (1)
C = molar concentration
R = Pressure constant = 0.0831 liter bar/mole K
T = temperature in kelvin = 22 + 273 = 295 K
To calculate water potential on side A:
C = 1 M
Water potential = - (1 x 1 x 0.0831 x 295) = -24.51 bars
For side B:
C = 2 M
Water potential = - (1 x 2 x 0.0831 x 295) = -49.03 bars
b.
<em>Since side A has higher water potential than side B, water will flow from side A to side B until equilibrium is established between the two sides. Water always flows from the region of higher water potential to the region of lower water potential.</em>
<em />