Answer:An integer is colloquially defined as a number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, 512, and √2 are not. ( means Whole in Latin ) please give brainliest if possible
Formula for curvature for a well behaved curve y=f(x) is
K(x)= ![\frac{|{y}''|}{[1+{y}'^2]^\frac{3}{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B%7C%7By%7D%27%27%7C%7D%7B%5B1%2B%7By%7D%27%5E2%5D%5E%5Cfrac%7B3%7D%7B2%7D%7D)
The given curve is y=7

k(x)=![\frac{7e^{x}}{[{1+(7e^{x})^2}]^\frac{3}{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B7e%5E%7Bx%7D%7D%7B%5B%7B1%2B%287e%5E%7Bx%7D%29%5E2%7D%5D%5E%5Cfrac%7B3%7D%7B2%7D%7D)
![{k(x)}'=\frac{7(e^x)(1+49e^{2x})(49e^{2x}-\frac{1}{2})}{[1+49e^{2x}]^{3}}](https://tex.z-dn.net/?f=%7Bk%28x%29%7D%27%3D%5Cfrac%7B7%28e%5Ex%29%281%2B49e%5E%7B2x%7D%29%2849e%5E%7B2x%7D-%5Cfrac%7B1%7D%7B2%7D%29%7D%7B%5B1%2B49e%5E%7B2x%7D%5D%5E%7B3%7D%7D)
For Maxima or Minima


→
[not possible ∵there exists no value of x satisfying these equation]
→
Solving this we get
x= 
As you will evaluate
<0 at x=
So this is the point of Maxima. we get y=7×1/√98=1/√2
(x,y)=[
,1/√2]
k(x)=![\lim_{x\to\infty } \frac{7e^{x}}{[{1+(7e^{x})^2}]^\frac{3}{2}}](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%5Cinfty%20%7D%20%5Cfrac%7B7e%5E%7Bx%7D%7D%7B%5B%7B1%2B%287e%5E%7Bx%7D%29%5E2%7D%5D%5E%5Cfrac%7B3%7D%7B2%7D%7D)
k(x)=
k(x)=0
The answer should be J.15.
Answer:
it be nine argrgrgrg now fillllllller
Answer
Part A: The right triangles are smiliar because If the lengths of the hypotenuse and a leg of a right triangle are proportional to the corresponding parts of another right triangle, then the triangles are similar.
Part B: 2z:2x or 2z/2x. You can write z/x as z:x. Then just multiply both sides by the same number to get an equivalent ratio. Let's multiply by 2. then the answer will be: 2z:2x or 2z/2x
Step-by-step explanation: