Answer:
f(x)=2(\dfrac{2}{3})^x.
Step-by-step explanation:
f(x)=1/2(2)xf(x)=3/4(-1/5)xf(x)=(7/2)xf(x)=2(2/3)x
Cos 70 = horizontal distance /
100 horizontal distance = 100 cos 70 = 32.2feet
Respuesta:
28; 33
A (n) = 5n - 2
Explicación paso a paso:
A partir de los datos dados, 3, 8, 13, 18, 23…, podemos ver que cada valor sucesivo de la serie aumenta en 5;
Por lo tanto, los siguientes dos términos de la serie deberían ser:
23 + 5 = 28
28 + 5 = 33
La serie es una progresión aritmética:
Recuerde la fórmula general:
A (norte) = a + (norte - 1) d
Donde, a = Primer término = 3; d = diferencia común = 5
n = enésimo término
A (n) = 3 + (n-1) 5
A (n) = 3 + 5n - 5
A (n) = 5n - 2
2a + 3p = 1.59
a = 0.24
Plug it in our equation:
2(0.24) + 3p = 1.59
Multiply:
0.48 + 3p = 1.59
Subtract 0.48 to both sides:
3p = 1.11
Divide 3 to both sides:
p = 0.37
So one pair costs <span>£0.37</span>
If you get 0 as the last value in the bottom row, then the binomial is a factor of the dividend.
Let's say the binomial is of the form (x-k) and it multiplies with some other polynomial q(x) to get p(x), so,
p(x) = (x-k)*q(x)
If you plug in x = k, then,
p(k) = (k-k)*q(k)
p(k) = 0
The input x = k leads to the output y = 0. Therefore, if (x-k) is a factor of p(x), then x = k is a root of p(x).
It turns out that the last value in the bottom row of a synthetic division table is the remainder after long division. By the remainder theorem, p(k) = r where r is the remainder after dividing p(x) by (x-k). If r = 0, then (x-k) is a factor, p(k) = 0, and x = k is a root.