Answer:
B) fats
Explanation:
Common hepatic duct is s the part of the biliary tract which means that is involved in the secretion of bile.
Bile salts secreted from the bill have an important role in emulsification of lipids (fats). They have the ability to aggregate around lipids thanks to their amphipatic nature. Amphipatic nature means that they have hydrophobic side which binds directly to lipids and hydrophilic side which are faced outwards. Lipids enveloped with bile salts are called micelles.
Formation of micelles increases the surface area of fat, which is appropriate for the the action of the enzyme pancreatic lipase (perform digestion of triglycerides).
The correct answer is: C) Mycobacterium tuberculosis.
Tuberculosis is an infectious disease that most commonly affects lungs. Mycobacterium tuberculosis is a small, aerobic, nonmotile bacillus type of bacteria responsible for this disease.
There are two forms of tuberculosis:
• Latent-without symptoms
• Active-with symptoms such as chronic cough, fever, sweats, weight loss..
People with active tuberculosis can spread it by the air while they cough, spit, speak, or sneeze.
This is an example of Precursor gene regulation (protein translation) type of eukaryotic gene regulation.
<u>Explanation:</u>
The source which breakdown proteins into smaller amino acid is pepsin and generated as top cells within stomach lining or membrane, responsible for pepsinogen emission inside stomach. It is represented as zymogen having an extra 44 amino acids linkage as its primary structure. Hydrochloric acid (HCl) releases this zymogen which is emitted from the parietal cells in the stomach lining.
Once food is consumed, the hormone gastrine and the vagus nerve cause the secretion of both pepsinogen and HCl from the stomach lining. Hydrochloric acid induces an acidic environment that allows pepsinogen to unfold in an autocatalytic manner and thus generates pepsin the active form.
Answer:
Generally, K+ ions ensures re-polarization of the membrane potential. It always ensures that the neuron returns its resting state, protecting the neurons and ensuring episode of rest before the next action potential.
K+ does this by leaving the axon, making the inner layer more negative. This is resting membrane potential. Because there are many K+ channels for leakages out of the neuronal axons.
Therefore, in this scenario, he neuron will return to its resting membrane potential state which between values -50 to -75mV.
Therefore the value of the potential will be -60mV, or within the range of -50 to -60mV. This is because the neuron is is non- excitable.
Explanation:
Answer:
fatty-acid-based lipids and proteins
hope this helped
Explanation: