1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LUCKY_DIMON [66]
4 years ago
5

What is the following product? 3√16x^7 3√12x^9 Please help, Thank you!

Mathematics
2 answers:
jeyben [28]4 years ago
7 0

Answer:

Product of cube root of :

\sqrt[3]{16x^7} \times \sqrt[3]{12x^9}

First simplify :\sqrt[3]{16x^7}

Factor: One of two or more expressions that are multiplied together to get a product

then, we can write it as:

\sqrt[3]{2 \cdot 8 x^7} ,

Rewrite 8 as 2^3 and x^7 = x^6 \cdot x

\sqrt[3]{2\cdot 2^3 \cdot x^6 \cdot x} or

\sqrt[3]{2\cdot 2^3 \cdot (x^2)^3 \cdot x}       [∵ (a^x)^y=a^{xy} ]

or  \sqrt[3]{2^3 \cdot (x^2)^3 \cdot 2\cdot x}

or 2 \cdot x^2\sqrt[3]{2\cdot x}     [∵\sqrt[3]{a^3} =a ]

Similarly, we simplify for \sqrt[3]{12 x^9}

Then, we can write it as \sqrt[3]{12\cdot (x^3)^3}  or

x^3 \cdot \sqrt[3]{12}

Use : x^{a+b}=x^a \cdot x^b , \sqrt[3]{a} \cdot\sqrt[3]{b} = \sqrt[3]{a \cdot b}

Now,

\sqrt[3]{16x^7} \times \sqrt[3]{12x^9} = 2 \cdot x^2\sqrt[3]{2\cdot x} \times x^3 \cdot \sqrt[3]{12}

= 2x^2 \cdot x^3 \sqrt[3]{2x} \cdot \sqrt[3]{12}

= 2 x^5\cdot \sqrt[3]{2x \cdot 12} or 2x^5 \cdot \sqrt[3]{24 x}

= 2x^5 \cdot \sqrt[3]{8 \cdot 3x} or 2 x^5 \cdot \sqrt[3]{2^3 \cdot 3 \cdot x}

= 2x^5 \cdot 2 \sqrt[3]{3x} = 4 x^5 \cdot \sqrt[3]{3x}

therefore, the product of  \sqrt[3]{16x^7} \times \sqrt[3]{12x^9} is,  4 x^5 \cdot \sqrt[3]{3x}








ira [324]4 years ago
5 0

\displaystyle\sqrt[3]{16x^7}\times\sqrt[3]{12x^9}=\sqrt[3]{16\cdot 12x^{(7+9)}}\\\\=\sqrt[3]{4^3\cdot 3x^{16}}=\sqrt[3]{\left(4x^5\right)^3\cdot 3x}\\\\=4x^5\sqrt[3]{3x}

You might be interested in
1.What is the ratio of v to v max expressed as a percentage when [s] = 30 km
Helga [31]

Answer:

(a)96.77%

(b)3.23%

Step-by-step explanation:

Starting with the Michaelis-Menten equation which is used to model biochemical reactions:

Dividing both sides by V_{\max }}

\dfrac{v}{V_{max}}=\dfrac{[S]}{K_M + [S]}

Where: V_{\max }} = maximum rate achieved by the system

K_{\mathrm {M} }}=The Michaelis constant

{\displaystyle {\ce {[S]}}}= Substrate concentration

(a) When [S]=30K_M

\dfrac{v}{V_{max}}=\dfrac{[S]}{K_M + [S]}\\\dfrac{v}{V_{max}}=\dfrac{30K_M}{K_M + 30K_M}\\\dfrac{v}{V_{max}}=\dfrac{30}{1 + 30}\\\dfrac{v}{V_{max}}=\dfrac{30}{31}\\$Expressed as a percentage\\\dfrac{v}{V_{max}}=\dfrac{30}{31}X100=96.77\%

(b)When K_M=30[S]

\dfrac{v}{V_{max}}=\dfrac{[S]}{K_M + [S]}\\\dfrac{v}{V_{max}}=\dfrac{[S]}{30[S] + [S]}\\\\=\dfrac{1[S]}{30[S] + 1[S]}\\=\dfrac{1}{30 + 1}\\\dfrac{v}{V_{max}}=\dfrac{1}{31}\\$Expressed as a percentage\\\dfrac{v}{V_{max}}=\dfrac{1}{31}X100=3.23\%

8 0
3 years ago
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
Common factors of 50,30,100
umka21 [38]
Common factors of 50: 1, 2, 5, 10, 25, 50
Common factors of 30: 1, 2, 3, 5, 6, 10, 15, 30
Common factors of 100: 1, 2, 4, 5, 10, 20, 25, 50, 100

You're welcome.
6 0
3 years ago
Read 2 more answers
Find the gradient of the function at given point. f(x,y)=ln(x^2+y^2)
N76 [4]
\nabla f(x,y)=\left\langle\dfrac{\partial f}{\partial x},\dfrac{\partial f}{\partial y}\right\rangle=\left\langle\dfrac{2x}{x^2+y^2},\dfrac{2y}{x^2+y^2}\right\rangle

You didn't provide the "given point", but I assume you're capable of plugging it in.
5 0
3 years ago
chegg tell whether each sequence is arithmetic. if the sequence os arithmetic, identify the common difference and find the indic
spin [16.1K]

No, the given sequence is not an arithmetic sequence.

What is Arithmetic Sequence ?

An arithmetic sequence is a list of numbers with a definite pattern. If you take any number in the sequence then subtract it by the previous one, and the result is always the same or constant then it is an arithmetic sequence.

In the above question,

The sequence is 3,5/2,3/2,-3/2,...

Take the 2nd term and minus the 1st term.

Now take the 3rd term and minus the 2nd term.

We can clearly notice that the differences are not same. Hence there is no common difference and therefore it's not an arithmetic sequence

To read about arithmetic sequence click here :

brainly.com/question/27079755

#SPJ4

5 0
1 year ago
Other questions:
  • PLEASE HELP!
    15·1 answer
  • Please help please!!!!!!!!!!
    5·1 answer
  • Which pair of triangles can be proven congruent by SAS?
    10·1 answer
  • 10 gallons drank 5 cups how many left
    13·1 answer
  • True or false of the matrix question?
    7·2 answers
  • Misumi started with $217 in her bank account. She deposits $25.50 each week and never withdraws any money. What expression can M
    12·1 answer
  • Explain WHY a rotation of 180° is the same as doing<br> reflection over the x-axis AND the y-axis?
    6·1 answer
  • Graph the line based on the following information. <br><br> y−intercept: 2 Slope: − 4/1<br> ​
    13·2 answers
  • Neeeddd helppppp now !
    11·1 answer
  • Lednfkg65tfbgjrnfueru3rnrhr please help me:)
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!