Answer:
Product of cube root of :
![\sqrt[3]{16x^7} \times \sqrt[3]{12x^9}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%20%5Ctimes%20%5Csqrt%5B3%5D%7B12x%5E9%7D)
First simplify :![\sqrt[3]{16x^7}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D)
Factor: One of two or more expressions that are multiplied together to get a product
then, we can write it as:
,
Rewrite 8 as
and 
or
[∵
]
or
or
[∵
]
Similarly, we simplify for ![\sqrt[3]{12 x^9}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B12%20x%5E9%7D)
Then, we can write it as
or
![x^3 \cdot \sqrt[3]{12}](https://tex.z-dn.net/?f=x%5E3%20%5Ccdot%20%5Csqrt%5B3%5D%7B12%7D)
Use :
, ![\sqrt[3]{a} \cdot\sqrt[3]{b} = \sqrt[3]{a \cdot b}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Ba%7D%20%5Ccdot%5Csqrt%5B3%5D%7Bb%7D%20%3D%20%5Csqrt%5B3%5D%7Ba%20%5Ccdot%20b%7D)
Now,
= ![2 \cdot x^2\sqrt[3]{2\cdot x} \times x^3 \cdot \sqrt[3]{12}](https://tex.z-dn.net/?f=2%20%5Ccdot%20x%5E2%5Csqrt%5B3%5D%7B2%5Ccdot%20x%7D%20%5Ctimes%20x%5E3%20%5Ccdot%20%5Csqrt%5B3%5D%7B12%7D)
= ![2x^2 \cdot x^3 \sqrt[3]{2x} \cdot \sqrt[3]{12}](https://tex.z-dn.net/?f=2x%5E2%20%5Ccdot%20x%5E3%20%5Csqrt%5B3%5D%7B2x%7D%20%5Ccdot%20%5Csqrt%5B3%5D%7B12%7D)
=
or
=
or ![2 x^5 \cdot \sqrt[3]{2^3 \cdot 3 \cdot x}](https://tex.z-dn.net/?f=2%20x%5E5%20%5Ccdot%20%5Csqrt%5B3%5D%7B2%5E3%20%5Ccdot%203%20%5Ccdot%20x%7D)
=
= ![4 x^5 \cdot \sqrt[3]{3x}](https://tex.z-dn.net/?f=4%20x%5E5%20%5Ccdot%20%5Csqrt%5B3%5D%7B3x%7D)
therefore, the product of
is, ![4 x^5 \cdot \sqrt[3]{3x}](https://tex.z-dn.net/?f=4%20x%5E5%20%5Ccdot%20%5Csqrt%5B3%5D%7B3x%7D)