Answer:
The probability is 0.971032
Step-by-step explanation:
The variable that says the number of components that fail during the useful life of the product follows a binomial distribution.
The Binomial distribution apply when we have n identical and independent events with a probability p of success and a probability 1-p of not success. Then, the probability that x of the n events are success is given by:

In this case, we have 2000 electronics components with a probability 0.005 of fail during the useful life of the product and a probability 0.995 that each component operates without failure during the useful life of the product. Then, the probability that x components of the 2000 fail is:
(eq. 1)
So, the probability that 5 or more of the original 2000 components fail during the useful life of the product is:
P(x ≥ 5) = P(5) + P(6) + ... + P(1999) + P(2000)
We can also calculated that as:
P(x ≥ 5) = 1 - P(x ≤ 4)
Where P(x ≤ 4) = P(0) + P(1) + P(2) + P(3) + P(4)
Then, if we calculate every probability using eq. 1, we get:
P(x ≤ 4) = 0.000044 + 0.000445 + 0.002235 + 0.007479 + 0.018765
P(x ≤ 4) = 0.028968
Finally, P(x ≥ 5) is:
P(x ≥ 5) = 1 - 0.028968
P(x ≥ 5) = 0.971032
Answer:
y=4x-5
Step-by-step explanation:
Answer:
164
Step-by-step explanation:
in standard form CLXIV IS 164
Answer:
25 is the answer
for proof see the pic
<em>first divide it by 11 then and when you get the numerator as 100 and denominator as 4 divide it by 2</em>
So as to get numerator as 50 and denominator as 2 .
<em>L</em><em>a</em><em>t</em><em>e</em><em>r</em><em>,</em><em> </em><em>D</em><em>i</em><em>v</em><em>i</em><em>d</em><em>e</em><em> </em><em>i</em><em>t</em><em> </em><em>b</em><em>y</em><em> </em><em>2</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>h</em><em>e</em><em>n</em><em>c</em><em>e</em><em>,</em><em> </em><em>y</em><em>o</em><em>u</em><em>r</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>i</em><em>s</em><em> </em><em>2</em><em>5</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>;</em><em>)</em>