It is in simplest form. In decimal form, it would be 0.5
Answer:
0
Step-by-step explanation:
∫ sin²(x) cos(x) dx
If u = sin(x), then du = cos(x) dx.
∫ u² du
⅓ u³ + C
⅓ sin³(x) + C
Evaluate between x=0 and x=π.
⅓ sin³(π) − ⅓ sin³(0)
0
Question:
A cinema can hold 270 people at one performance 5/9 of the seats were occupied of the occupied seats 40% we occupied by concessionary ticket holders.
What is the number of seats occupied by concessionary ticket holders?.
Answer:
60 seats
Step-by-step explanation:
Given
Number of seats = 270
Occupied Seats = 5/9
Concessionary ticket holders = 40% of occupied Seats
Required
The number of seats occupied by concessionary ticket holders
First the number of occupied seat has to be calculated.



Next is to determine the number of seats occupied by concessionary ticket holders.


Convert percentage to decimal


<em>Hence, 60 seats were occupied by concessionary ticket holders.</em>
Answer:
i really dont know cause i nwed help too
Answer:
84%
Step-by-step explanation:
We have to remember that z-scores are values to find probabilities for any <em>normal distribution</em> using the <em>standard normal distribution</em>, a conversion of the normal distribution to find probabilities related to that distribution. One way to find the above z-scores is:

As a result, we can say that one standard deviation above the mean is equal to a z-score = 1, or that one standard deviation below the mean is equal to a z-score = -1, to take some examples.
The corresponding cumulative probability for a z-score = 1 (<em>one standard deviation above the mean</em>) can be obtained from the <em>cumulative standard normal table</em>, that is, the cumulative probabilities from z= -4 (four standard deviations below the mean) to the value corresponding to this z-score = 1.
Thus, for a z-score = 1, the <em>cumulative standard normal table</em> gives us a value of P(x<z=1) = 0.84134 or 84.134. In other words, below z = 1, there are 84.134% of cases below this value.
Applying this for the case in the question, the percentage of test scores below 69 (one standard deviation above the mean) is, thus, 84.134%, and rounding to the nearest whole number is simply 84%.