1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonbull [250]
3 years ago
12

Can someone help? Thanks!

Mathematics
1 answer:
jolli1 [7]3 years ago
8 0

Answer:

The answer is D.

Step-by-step explanation:

The plots are going down to the right, showing a negative slope. The plots are do not have the same x-axis/domain, so there is a linear asociation between the two.

You might be interested in
1. The difference of five times a number and 6 is -2.
OlgaM077 [116]

Answer:

13

Step-by-step explanation:

5-x+6=-2

X=13

5 0
3 years ago
Find the simple interest on $2,219 principal, deposited for 6 years at a rate of 1.91%
Aleks04 [339]

Answer:

$13,568.30

Step-by-step explanation:

I = Prt

I = 2,219(1.0191)(6) = 13,568.30

6 0
3 years ago
These triangles are similar. find Y and X
CaHeK987 [17]

It these triangles are similar, then the sides of the triangles are in proportion:

\dfrac{y}{10}=\dfrac{y+4}{15}      <em>cross multiply</em>

15y=10(y+4)    <em>use distributive property</em>

15y=10y+40       <em>subtract 10y from both sides</em>

5y=40           <em>divide both sides by 5</em>

\boxed{y=8}


\dfrac{x}{4}=\dfrac{6}{8}            <em>cross multiply</em>

8x=(4)(6)

8x=24           <em>divide both sides by 8</em>

\boxed{x=3}

3 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
What is the answer, step by step? 208x13
Nostrana [21]

Answer:

208*13= 2704

Step-by-step explanation

    +2

   208

<u> x     13</u>

    624

<u>+ 2080</u>

  2704

6 0
3 years ago
Other questions:
  • if $5,000 is invested at an interest rate of 4% each year what is the value of the investment in 5 years? write an exponential f
    9·2 answers
  • Is the equation a true statement when x = -3? In the other words, is -3 a
    15·1 answer
  • The correct answer will be marked Brainliest!
    5·2 answers
  • Irian bought 2 songbooks and a new guitar. Each songbook cost the same price. The guitar cost $250.10. Before tax, she spent a t
    9·1 answer
  • Trying to figure out 5n + 6 + (7n)<br><br> I have it written out but Im affraid it's wrong
    9·1 answer
  • a store sells boxes of juice in equal packs Garth bought 18 boxes Rico bought 36 boxes and my butt 45 boxes what is the greatest
    5·2 answers
  • What is the simplified form of 0.2 to the fifth power?
    6·2 answers
  • I need help ASAP
    12·1 answer
  • Find all real values of x for which f(x) = 0.<br><br> f(x) = 30 - 5x
    6·1 answer
  • Christy subtracted to find her jogging rate for each time period and said that her rate
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!