For skewed data displays, the median is often a better estimate of the center of distribution than the mean because the former is unaffected by large numbers.
<h3>What is mean?</h3>
Mean refers to the average of set of two or more numbers.
Mean of a set having 'n' numbers = 
<h3>What is median?</h3>
Median refers to the middle-most value of a list of numbers, arranged either in ascending or descending order.
Median = 
Now,
- Since it takes the average of all the values in the data set, the mean is the most widely used measure of central tendency.
- Because it is unaffected by exceptionally big numbers, the median performs better than the mean when analyzing data from skewed distributions.
Hence, For skewed data displays, the median is often a better estimate of the center of distribution than the mean.
To learn more about mean and median, refer to the link:brainly.com/question/6281520
#SPJ4
Answer:
a. Assume that the population has a normal distribution.
b. The 90% confidence interval of the mean sale time for all homes in the neighborhood is between 219.31 days and 240.69 days.
Step-by-step explanation:
Question a:
We have to assume normality.
Question b:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
That is z with a pvalue of
, so Z = 1.645.
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 230 - 10.69 = 219.31 days.
The upper end of the interval is the sample mean added to M. So it is 230 + 10.69 = 240.69 days.
The 90% confidence interval of the mean sale time for all homes in the neighborhood is between 219.31 days and 240.69 days.
Answer:
(0,1)
Step-by-step explanation:
the answer is (0,1)
Answer
Find out the value of AM.
To prove
As given
In ABC,
centroid D is on median AM.
AD = x + 5 and DM = 3x – 5.
By using the centroid property
The centroid divides each median in a ratio of 2:1.
Thus D divide the median AM in a ratio of 2:1.
Therefore
(AD) = 2DM
(x + 5) = 6x – 10
5x = 15

x = 3
Now
AM = 3+ 5
= 8 unit
DM = 3 × 3- 5
= 4 unit
AM = AD + DM
= 8 + 4
AM = 12 unit
Therefore the AM is 12 unit.