1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shalnov [3]
3 years ago
10

The average cost per hour in dollars of producing x riding lawn mowers is given by the following. C(x)=0.7x^2+25x-258+(2500/x).

​(a) Use a graphing utility to determine the number of riding lawn mowers to produce in order to minimize average cost. ​(b) What is the minimum average​ cost?

Mathematics
1 answer:
Snezhnost [94]3 years ago
8 0
A) See the attached graph.

b) $298.92 per hour

You might be interested in
Evaluate the expression when x = 4.
gulaghasi [49]
We have 3*4+2, or 14, by substituting in for x.
4 0
3 years ago
The vertices of AMNO are M (1,3), N (4,9), and O (7,3). The vertices of APQR are P (3,0), Q (4,2), and R (5,0) Which conclusion
Pavel [41]

Answer:

the correct answer should be C

Step-by-step explanation:

hope this helps you

3 0
3 years ago
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Consider the system of linear equations.<br><br> 2y = x + 10<br><br> 3y = 3x + 15
Art [367]
I hope this helps you

5 0
3 years ago
Fifty four percent of 150 students polled at a local university want a new fitness center built.
Murljashka [212]
The population 150 students

The sample is 54% of students
I’m not sure but I hope this helps!
3 0
3 years ago
Other questions:
  • Jillian has three different bracelets (x y and z) to give to her friends as gifts In any order she prefers if the bracelet y is
    8·1 answer
  • 78(−32−48x)+36=23(−33x−18)−10x <br><br> Solve for x.
    9·2 answers
  • (−14x^3y^3+4x^5 y6)÷(2x^4y^5)
    6·1 answer
  • Of the words, which is five-sixths of the list. How many words are on the list?
    10·1 answer
  • There are 120 minutes in 2 hours. How many minutes are in 15 hours? what operation do I use
    13·2 answers
  • What is the domain for the piece of the function represented by f(x) = x + 1? x &lt; –1 –1 ≤ x ≤ 1 1 ≤ x &lt; 2 x &gt; 1
    14·1 answer
  • A road map has a scale of 1: 30 000
    10·2 answers
  • Suzi needs to open her safe. She has forgotten the code!
    11·1 answer
  • Can someone please help me with this??Find the equation for the following parabola ( Parabolas) !
    12·1 answer
  • Are these correct? Someone who has done this before or good at angles should answer.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!