Answer:
- vertical scaling by a factor of 1/3 (compression)
- reflection over the y-axis
- horizontal scaling by a factor of 3 (expansion)
- translation left 1 unit
- translation up 3 units
Step-by-step explanation:
These are the transformations of interest:
g(x) = k·f(x) . . . . . vertical scaling (expansion) by a factor of k
g(x) = f(x) +k . . . . vertical translation by k units (upward)
g(x) = f(x/k) . . . . . horizontal expansion by a factor of k. When k < 0, the function is also reflected over the y-axis
g(x) = f(x-k) . . . . . horizontal translation to the right by k units
__
Here, we have ...
g(x) = 1/3f(-1/3(x+1)) +3
The vertical and horizontal transformations can be applied in either order, since neither affects the other. If we work left-to-right through the expression for g(x), we can see these transformations have been applied:
- vertical scaling by a factor of 1/3 (compression) . . . 1/3f(x)
- reflection over the y-axis . . . 1/3f(-x)
- horizontal scaling by a factor of 3 (expansion) . . . 1/3f(-1/3x)
- translation left 1 unit . . . 1/3f(-1/3(x+1))
- translation up 3 units . . . 1/3f(-1/3(x+1)) +3
_____
<em>Additional comment</em>
The "working" is a matter of matching the form of g(x) to the forms of the different transformations. It is a pattern-matching problem.
The horizontal transformations could also be described as ...
- translation right 1/3 unit . . . f(x -1/3)
- reflection over y and expansion by a factor of 3 . . . f(-1/3x -1/3)
The initial translation in this scenario would be reflected to a translation left 1/3 unit, then the horizontal expansion would turn that into a translation left 1 unit, as described above. Order matters.
Answer:
The number of comic books did they have in all = 56
Step-by-step explanation:
The ratio of comics with Susan : Abe = 3 : 5
Let us assume the common factor on this ratio = m
So, the number of comics Susan has = 3 m
The number of comics Abe has = 5 m
Also, given: Abe had 14 more comic books than Susan
So, the number of comics Abe had = 14 + 3 m
⇒ 5 m = 3 m + 14
or, 2 m = 14, or m = 7
So, the number of books Susan has = 3 m = 3 x 7 = 21 books
The number of books Abe has = 5 m = 5 x 7 = 35
So, the book they have in all = 21 + 35 = 56
Answer:
<em>5 Cylinders</em>
Step-by-step explanation:
<u><em>Hope I helped!!! </em></u>
<u><em>Please let me know if im correct or incorrect :)</em></u>
<em>~Nuha <3</em>
Hey there
____________
The correct answer is :3/5 of the numbers are odd so we just multiply 400 by 3/5:
400 \times \frac{3}{5} = 240
so the best prediction is 240.
_________________
Hope this helps you