Integrate both sides with respect to <em>t</em> :
∫ d<em>y</em>/d<em>t</em> d<em>t</em> = ∫ -12<em>t</em> ² d<em>t</em>
<em>y(t)</em> = -4<em>t</em> ³ + <em>C</em>
Use the initial condition to solve for <em>C</em> :
5 = -4•0³+ <em>C</em>
<em>C</em> = 5
So
<em>y(t)</em> = -4<em>t</em> ³ + 5
and the answer is D.
Alternatively, you can directly apply the fundamental theorem of calculus:



Answer:
If your rounding up, its 1/2
Step-by-step explanation:
Sure , What Do Youu Need Help With ?
(f-g)(x) = f(x) - g(x)
= (x^3 -2x+6) - (2x^3+3x^2-4x+2)
= x^3 -2x +6 -2x^3 -3x^2 +4x -2 . . . . distribute the negative sign
= (1-2)x^3 -3x^2 +(-2+4)x +(6-2) . . . . . combine like terms
(f-g)(x) = -x^3 -3x^2 +2x +4
Answer:
5/1
Step-by-step explanation: