Answer:
44, 6, and 24 are not perfect square
Step-by-step explanation:
Perfect square are numbers that can be square rooted with a result of a perfect whole number.
√16=4
√44= 6.63324...
√81= 9
√6= 2.44948...
√49= 7
√24= 4.898997...
Answer:
9/20 yes, 4/15 not. See below
Step-by-step explanation:
Pick 9/20 and multiply numerator and denominator by 5:
9/20 = 45/100
We know that if we divide a number by 100 we need to move the coma as two places left, so:
9/20 = 45/100 = 0.45
And this is a terminal decimal as we know where it ends.
On the other hand if we pick 4/15 let try to divide it (here I will do it 'manually'):
4 |_ 15
we can divide 4 by 15, so we use 40 and begin with a comma
40 |_ 15
0.
15 enters 2 times in 40 with a rest of 10, so:
40 |_ 15
30 0.2
100
100 divided by 15 is 6 and we have 10 as rest again, and again and again...
40 |_ 15
30 0.266.....
100
100
....
So, we will have 0.266666666666666 infinitely. The decimal for 4/15 is non terminating and is 0.26666666666666666...
Is this the image? If so, sorry I can't do this lol
Answer:
9560
Step-by-step explanation:
Use a calculator or do long division.
You can also divide by 2 twice.
38240/2 = 19120
19120/2 = 9560
Answer: 9560
Refer the attached figure for the graphic representation of the given quadratic equation.
<u>Step-by-step explanation:</u>
Given expression:

To find:
The graphic representation of the given quadratic function
For solution, plot the graph to the given quadratic equation.
The standard form of the equation is

When comparing with given quadratic equation,
a = 1, b = - 8, c = 24
Axis of symmetry is 
By applying the values, the axis of symmetry of given equation is

The vertex form of quadratic equation is 
Where, (h,k) are the vertex.
Convert the quadratic equation into vertex form.
By completing the square,



On comparison,
(h , k) = (4 , 8)
Now, plot the equation with vertex (4,8) [refer attached figure].